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Abstract

The accelerated proximal methods (APM) have become one of the most important opti-
mization tools for large-scale convex composite minimization problems, due to their wide
range of applications and the optimal convergence rate in first-order algorithms. However,
most existing theoretical results of APM are obtained by assuming that the gradient or-
acle is exact and the proximal mapping must be exactly solved, which may not hold in
practice. This work presents a theoretical study of APM by allowing to use inexact gradi-
ent oracle and approximate proximal mapping. Specifically, we analyze inexact APM by
improving the approximate duality gap technique (ADGT) which was originally designed
for convergence analysis for first-order methods with both exact gradient oracle and prox-
imal mapping. Our approach has several advantages: 1) we provide a unified convergence
analysis that allows both inexact gradient oracle and approximate proximal mapping; 2)
our proof is generic that naturally recovers the convergence rates of both accelerated and
non-accelerated proximal methods, on top of which the advantages and the disadvantages
of acceleration can be easily derived; 3) we derive the same convergence bound as previous
methods in terms of inexact gradient oracle, but a tighter convergence bound in terms of
approximate proximal mapping.
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1. Introduction

For large-scale convex optimization problems, as it is prohibitive to compute the Hessian
matrix, first-order algorithms have become the most important technique due to much
cheaper per-iteration cost for evaluating first-order gradients. For smooth and convex func-
tions, non-accelerated first-order algorithms converge with a rate of O(1/k), where k is the
number of times for querying first-order gradients. This result, however, is less desirable and
not optimal (Nesterov, 2013; Bubeck, 2015). To improve it, Nesterov (1983) presented the
accelerated gradient descent (AGD) method to achieve a convergence rate of O(1/k2) for
smooth and convex functions, which is optimal for first-order algorithms (Nemirovsky and
Yudin, 1983). Since then, accelerated first-order algorithms have been extensively studied
(Nesterov, 2005; Tseng, 2008; Beck and Teboulle, 2009; Bubeck et al., 2015; Bubeck, 2015;
Nesterov, 2013; Allen-Zhu and Orecchia, 2017; Xu et al., 2018; Yao et al., 2017; Zhou et al.,
2020; Ye et al., 2020).

In the literature, convergence analysis is mainly obtained by assuming that the gradient
oracle is exact (noiseless). That means there exists a black-box that can return an exact
first-order gradient for any given point (Nesterov, 2013; Bubeck, 2015). However, in many
applications, only an approximate or a noise-corrupted (i.e., inexact) gradient is available.
For example, gradients may only be approximately computed when applying the smoothing
technique to non-smooth functions (Nesterov, 2005), which depends on solving another
auxiliary problem that might not be easily solved. In the case of inexact gradient, it has
been empirically observed that non-accelerated first-order algorithms (e.g., gradient descent
(GD)) significantly outperform AGD (Hardt, 2014). In other words, empirically, non-
accelerated first-order algorithms are more robust with inexact gradient oracle than their
accelerated counterparts. Therefore, it is important to theoretically study the robustness
of accelerated first-order algorithms with inexact gradient oracle.

To this end, several models with inexact gradient oracle have been introduced to study
the robustness of accelerated first-order algorithms. Existing works can be classified into two
categories: deterministic perturbation and stochastic noise. In the first category, the inexact
gradient oracle is generally defined by extending existing properties of exact gradient to the
case of inexact gradient (d’Aspremont, 2008; Devolder et al., 2014). In the latter category,
the true gradient is assumed to be corrupted by a stochastic noise (Lan, 2012; Ghadimi and
Lan, 2012, 2013; Zhang et al., 2014; Dvurechensky and Gasnikov, 2016; Jain et al., 2018;
Wangni et al., 2018; Kulunchakov and Mairal, 2019a; Aybat et al., 2019; Wang and Zhang,
2019; Kulunchakov and Mairal, 2019b, 2020; Assran and Rabbat, 2020). Recently, Cohen
et al. (2018) presented a theoretical study for the robustness of accelerated algorithms by
using a more general model of noise-corrupted gradient oracle. Although their analysis is
based on stochastic noise, it can also recover the results based on deterministic perturbation
models presented in (d’Aspremont, 2008; Devolder et al., 2014). However, their results
are limited to convex and smooth objectives which are less desirable, as the objectives of
many machine learning problems are convex composite, (Tibshirani, 1996; Bach et al., 2012;
Bassily et al., 2014; Parikh and Boyd, 2014; Tan et al., 2015a,b) instead of smooth (Hastie
et al., 2009).
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To overcome the aforementioned limitation, we present a study of the robustness of
accelerated proximal methods (APM) for convex composite objectives. Specifically, we
consider the minimization problem in the form of

min
x∈X

P (x)
def
= f(x) + h(x), (1)

where f(x) is convex and L-smooth w.r.t. ‖ · ‖ (refer to Definition 1), and h(x) is convex
but non-smooth. Many problems in machine learning can be cast by (1) (Bach et al., 2012).
Typically, f(·) defines a convex loss function for training examples, and h(·) regularizes the
model to promote a specified structure.

To solve (1), each iteration of proximal method (PM) (Parikh and Boyd, 2014; Ne-
mirovski, 2004) first takes gradient descent on the smooth function f(x) and then performs
proximal mapping on the non-smooth function h(x).

xi+1 = Proxaih
(
xi − ai∇f(xi)

)
, (2)

where ai is the step size at the i-th iteration and Proxaih(·) is the proximal mapping of h(·)

Proxaih(x̂) = argmin
x∈X

{
1

2ai
‖x− x̂‖22 + h(x)

}
. (3)

Unlike AGD+ (Cohen et al., 2018), APM for convex composite minimization may not have
an analytical solution at every iteration due to the proximal mapping of non-smooth h(x).
Therefore, we simultaneously study the robustness of APM with inexact gradient oracle
and approximate proximal mapping.

The framework we adopt is based on the approximate duality gap technique (ADGT)
introduced by Diakonikolas and Orecchia (2019). The ADGT constructs an estimate iter-
atively for the duality gap of the optimal solution, which can be easily tracked and should
be improved as the algorithm converges. Using ADGT to prove the convergence of APM is
conceptually clear. Typically, ADGT may be used to analyze the convergence of existing
first-order methods, but also useful in designing new first-order algorithms with tight con-
vergence bound. Our construction is, however, different to the original one since ours does
not assume the lower bound problem is exactly solved, and thus some important properties
of ADGT do not hold. We note that ADGT have been used before for analyzing accel-
eration with noisy gradient oracle for convex and smooth objectives (Cohen et al., 2018),
but not for accelerated proximal methods with approximate proximal mapping for convex
composite minimization. Specifically, we are interested in presenting a unified convergence
analysis of APM with both noise-corrupted gradients and approximate proximal mapping.

In the following, we discuss the main differences between our work and the most related
works, and summarize our contributions.

• We present a unified analysis method that covers both non-accelerated and accelerated
proximal methods for convex composite minimization. In particular, the convergence
rates of PM and APM can be obtained by a common convergence proof with different
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choices of parameters. This naturally provides a comparison between PM and APM,
which helps us to deeply understand the advantages as well as the disadvantages of
APM over PM. In addition, our analysis allows the norm to be an arbitrary norm
instead of only the Euclidean `2 norm. Thus, our approach works for the generalized
proximal mapping (i.e., Bregman divergence) while the analysis of (Schmidt et al.,
2011; Kulunchakov and Mairal, 2019a) only works for standard proximal mapping
(i.e., squared Euclidean distance).

• Our approach allows both inexact gradient oracle and approximate generalized prox-
imal mapping. Unlike AGD+ (Cohen et al., 2018), APM for convex composite min-
imization may not have an analytical solution for the generalized proximal mapping,
i.e., (11), due to either the complicated h(x) or general Bergman divergence. There-
fore, it is important to study the convergence rate of APM by allowing the generalized
proximal mapping to be solved approximately in expectation.

• To address the challenge of approximate proximal mapping, we present a different
method to construct the approximate duality gap that makes the convergence bound
simpler and tighter (Cohen et al., 2018; Diakonikolas and Orecchia, 2019, 2018; Jain
et al., 2018). In particular, our method is different from AGD+ (Cohen et al., 2018)
even when the objective is smooth, i.e., h(x) = 0. Taking Algorithm 1 for example,
we define a different formulation for updating vi i.e., (8). It only requires ∇̃f(xi) in
our method while AGD+ takes all previous ∇̃f(xj) from j = 1 to i (Cohen et al.,
2018). Specifically, if we choose to directly apply the idea of AGD+ (Cohen et al.,
2018) to the case of convex composite minimization (1), the update of vi, i.e., (8) in
Algorithm 1, becomes

vi ≈ argmin
v∈X

{
1

Ai

i∑
j=1

aj
〈
∇̃f(xj),v − xj

〉
+

1

Ai
Dψ(v,x0) + h(v)

}
. (4)

The comparison between (8) and (4) implies that our Algorithm 1 is different from
AGD+ (Cohen et al., 2018) even when the objective is smooth, i.e., h(x) = 0. Next,
we show that the upper bound of AkE[Gk] obtained by our method (8) is better than
that of AGD+ (4). Applying Lemma 4, AkE[Gk] obtained by our method is

AkE[Gk] ≤ Dψ(x?,x0) +
k∑
i=1

ai
〈
ηi,x

? − vi
〉

+

︷ ︸︸ ︷
k∑
i=1

ai
〈
wi,x

? − vi
〉

︸ ︷︷ ︸
¬

+
k∑
i=1

aiεi . (5)

In contrast, AkE[Gk] obtained by using (4) is

AkE[Gk] ≤ Dψ(x?,x0) +

k∑
i=1

ai〈ηi,x? − vi〉+

¯︷ ︸︸ ︷
k−1∑
i=1

Ai
〈
wi,vi+1 − vi

〉
︸ ︷︷ ︸

®

+2

k∑
i=1

Aiεi . (6)
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Compared with AGD+ (Cohen et al., 2018), our method has at least two advantages.
1) Comparing ¬ in (5) and ® in (6), we observe that our bound (5) is simpler than (6).
Unlike (Cohen et al., 2018), both vi and vi+1 are not an exact solution of proximal
in our case, thus our method avoids to handle two inexact solutions together, which
makes it easier to analyze. 2) More importantly, our bound is also tighter than (6).
Specifically,  in (5) is the sum of aiεi over i, while ¯ in (6) is the sum of Aiεi over
i. For accelerated methods, we have ai ∼ O(i) and Ai ∼ O(i2) (refer to Remark 2 for
details). Thus, our bound (5) is tighter than (6).

• Our analysis achieves the same convergence bound as existing accelerated stochastic
gradient methods (Kulunchakov and Mairal, 2020, 2019a; Aybat et al., 2019; Ghadimi
and Lan, 2013) in terms of inexact gradient oracle, but a tighter convergence bound
than (Kulunchakov and Mairal, 2019a; Schmidt et al., 2011) in terms of approximate
proximal mapping (see Tables 1 and 2 for details). To the best of our knowledge, our
work is the nevertheless the first to achieve such a tight bound.

• We analyze the effect of non-smooth regularization h(x) to the robustness of APM
with inexact gradient oracle by leveraging the equivalence between convex composite
minimization and constrained smooth optimization. Our analysis suggests that APM
is more robust with inexact gradient oracle when a stronger regularization is used
because it leads to a smaller feasible set (see Proposition 3 and Section 7.1).

1.1 Related Work

In the literature, several works have been proposed to study the effect of approximate
proximal mapping or linear oracle in first-order methods. Lin et al. (2017, 2015) present a
generic framework to accelerate first-order methods for convex (Lin et al., 2017) and non-
convex objectives (Paquette et al., 2018). Under the same inexactness setting (Definition 5),
our results are better than theirs. For example, to obtain O(1/k2) convergence rate for
convex objectives, (Lin et al., 2017, Proposition 6) suggests that the error is required to
decrease faster than O(1/k4), while our method only requires faster than O(1/k3) as shown
in (44) of Corollary 2. For strongly convex objectives, we also achieves better convergence
bound than (Lin et al., 2017) in terms of approximate proximal mapping.

To guarantee the convergence, Lan and Zhou (2016) prove that the error of inexact
linear oracle of conditional gradient descent is required to decrease as the iteration (see Lan
and Zhou, 2016, 2.30). It is worth noting the conditional gradient can only handle a special
case of (1) in which the non-smooth h(x) is an indicator function a convex set. By using a
stronger inexactness, Ben-Tal and Nemirovskii (2001); Kamzolov et al. (2020a); Stonyakin
et al. (2020) show that the error accumulation due to approximate proximal mapping can
be removed. Taking (Ben-Tal and Nemirovskii, 2001) for example (as they use the same
inexactness), it requires the approximate solution to satisfy Ψi(vi)−Ψi(v

?
i ) ≤ ε−Dψ(vi,v

?
i )

(see Ben-Tal and Nemirovskii, 2001, Lemma 5.5.1) where Dψ(vi,v
?
i ) ≥

γ
2‖vi − v?i ‖2. In

contrast, our method only needs to satisfy Ψi(vi) − Ψi(v
?
i ) ≤ ε as shown in Definition 5.

Kamzolov et al. (2020b) considers the same gradient noise as our work, however, they
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assume the objective function must be µ-strongly convex and L-smooth. Recently, Assran
and Rabbat (2020) also studied the convergence of Nesterov’s accelerated gradient with
inexact gradient oracle where they assume the objectives not only smooth and strongly
convex but also twice continuously differentiable. In contrast, we study both generally and
strongly convex objectives, with smooth f(x) and non-smooth h(x) objective functions.
In addition, Davis et al. (2018) also studied the convergence of non-accelerated first-order
proximal methods with inexact gradient oracle.

This paper is organized as follows. Section 2 introduces the notation and preliminaries.
Section 3 presents the APM with inexact gradient oracle and approximate proximal map-
ping for convex composite minimization; Section 4 is devoted to convergence analysis of
inexact APM; Section 5 introduces the extension to the case of strongly convex objectives
and Section 6 presents the extension to bounded variance models; Finally, we demonstrate
our analysis by experiments in Section 7 and conclude the paper in Section 8.

2. Notation and Preliminaries

Throughout this paper, we use lower-case and upper-case boldface characters (e.g., x and
X) to denote vectors and matrices, respectively. Let 0 be a vector or matrix with all its
entries equal to 0. We assume that the feasible region X ∈ Rn considered in problem (1) is
a closed convex set. We assume that there is an arbitrary but fixed norm ‖ · ‖ associated
with X . Then, all statements about functions properties are described with respect to the
norm. For generic norm ‖·‖, its dual norm ‖·‖∗ is defined as ‖y‖∗ = supx{〈x,y〉 | ‖x‖ ≤ 1},
where 〈·, ·〉 denotes the inner product.

Definition 1 (L-Smooth) We say a function f : X → R is L-smooth with respect to ‖ · ‖,
if it is differentiable and satisfies

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2,∀x,y ∈ X .

Definition 2 (γ-Strongly Convex) We say a function f : X → R is γ-strongly convex
with respect to ‖ · ‖, if it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
γ

2
‖y − x‖2,∀x,y ∈ X .

Definition 3 (Convex Conjugate) For f(x), its convex conjugate f∗(y) is defined as

f∗(y)
def
= sup

x

{
〈x,y〉 − f(x)

}
.

Lemma 1 (Hiriart-Urruty and Lemaréchal, 1993, Theorem 4.22) If f(x) is closed
and γ-strongly convex with respect to ‖ · ‖, then f∗(y) is 1

γ -smooth with respect to the dual

norm ‖ · ‖∗ and ∇f∗(y) = argmaxx

{
〈x,y〉 − f(x)

}
.
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3. Inexact APM for Convex Composite Minimization

This section presents the accelerated proximal methods (APM) with inexact gradient oracle
and approximate proximal mapping to address the convex composite problem (1).

3.1 Generalized Proximal Mapping

This section is dedicated to the concept of generalized proximal mapping. To this end, we
first introduce the classical Bregman divergence, which plays a key role for defining the
generalized proximal mapping.

Definition 4 (Bregman Divergence) (Bregman, 1967; Censor and Zenios, 1998) Let
ψ :X → R be a continuously differentiable function and γ-strongly convex with respect to
‖ · ‖. The Bregman divergence is defined as

Dψ(x,y)
def
= ψ(x)− ψ(y)− 〈∇ψ(y),x− y〉,∀x,y ∈ X .

The Bregman divergence Dψ(x,y) is essentially the difference between ψ(x) and its first-
order approximation provided by y. It includes many well-know examples.

• Squared Euclidean distance: let ψ(x)
def
= 1

2‖x‖
2
2, then Dψ(x,y) = 1

2‖x− y‖22.

• Squared Mahalanobis distance: let ψ(x)
def
= 1

2x>Mx where M � 0 is a positive semi-
definite matrix, then Dψ(x,y) = 1

2(x− y)>M(x− y).

• Kullback-Leibler divergence: let Ω
def
= {x ∈ Rn+ :

∑
i xi = 1} and ψ(x)

def
=
∑

i xi log xi,
then Dψ(x,y) =

∑
i xi log xi

yi
for x,y ∈ Ω.

Given Definition 4, we can generalize the proximal mapping (3) from squared Euclidean
distance to Bregman divergence (Parikh and Boyd, 2014). Specifically, the proximal method
with generalized proximal mapping for (1) is defined as

xi+1
def
= argmin

x∈X

{〈
∇f(xi),x− xi

〉
+

1

ai
Dψ(x,xi) + h(x)

}
, (7)

where ai is the step-size at ith iteration. The Bregman divergence used in generalized
proximal mapping provides many advantages. For example, it can be considered as precon-
ditioning, that allows us to use a more accurate model of f(x) around xi (Liu et al., 2019;
Wang et al., 2019). By choosing an approximate Dψ(·, ·), it is expected

f(x) ≈ f(xi) +
〈
∇f(xi),x− xi

〉
+

1

ai
Dψ(x,xi).

By doing so, this can improve the convergence of optimization algorithm, especially for an ill-
conditioned f(x). For example, Liu et al. (2019) demonstrate that the Bregman divergence
Dψ(x,y) = 1

2x>My can significantly improve the performance over SVRG (Johnson and
Zhang, 2013) and Katyusha X (Allen-Zhu, 2018), where M � 0 is a fixed preconditioner.
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Algorithm 1 Inexact APM for Convex Composite Minimization (1)

1: Input: starting point x0

2: A0 = 0 and y0 = v0 = x0

3: for i = 1 to k do
4: Set Ai := Ai−1 + ai
5: Set xi := Ai−1

Ai
yi−1 + ai

Ai
vi−1

6: Solve

vi ≈ argmin
v∈X

{〈
∇̃f(xi),v

〉
+

1

ai
Dψ(v,vi−1) + h(v)

}
(8)

such that E [Ψi(vi)−Ψi(v
?
i )] ≤ εi.

7: Set yi := Ai−1

Ai
yi−1 + ai

Ai
vi

8: end for
9: Output: yk

3.2 APM with Inexact Gradient Oracle and Approximate Proximal Mapping

The gradient oracle in generalized proximal mapping (7) is assume exact. To study the
robustness of APM with inexact gradient oracle, following (Cohen et al., 2018), we assume
the true gradient ∇f(xi) in (7) is corrupted by an additive noise ηi:

∇̃f(xi) = ∇f(xi) + ηi, (9)

where ηi can be either a deterministic or random variable. In Section 6, we show the
generalization of our approach to the bounded variance noise models from (Lan, 2012;
Ghadimi and Lan, 2012). Since ηi is allowed to be a random variable, it can be either the
error when the gradient is only estimated from a stochastic subset (Lan, 2012; Ghadimi
and Lan, 2012, 2013; Atchadé et al., 2017; Krichene and Bartlett, 2017; Jain et al., 2018;
Kulunchakov and Mairal, 2019a, 2020) or the intentionally added Gaussian noise of the
gradient in differential private empirical risk minimization (Bassily et al., 2014).

By replacing the noise-corrupted gradient ∇̃f(xi), the generalized proximal mapping
(7) becomes

xi+1
def
= argmin

x∈X

{〈
∇̃f(xi),x− xi

〉
+

1

ai
Dψ(x,xi) + h(x)

}
. (10)

In order to obtain accelerated convergence rate, we introduce another sequence variables
{vi}i≥0 and use it to perform extrapolation for xi (Nesterov, 1983, 2013). By doing so, (10)
becomes

v?i
def
= argmin

v∈X

{ Ψi(v)︷ ︸︸ ︷〈
∇̃f(xi),v

〉
+

1

ai
Dψ(v,vi−1) + h(v)

}
, (11)

where v?i is the optimal solution to the generalized proximal mapping (11). Since Ψi(v) is
strongly convex, the generalized proximal mapping (11) has a unique optimum. Applying
Lemma 1, the optimum is given in the following proposition.
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Proposition 1 Let ψi(v)
def
= ψ(v) + aih(v) and zi

def
= ∇ψ(vi−1)− ai∇̃f(xi), then v?i =

∇ψ∗i
(
zi
)
.

Proof The proof is straightforward by applying Lemma 1.

However, solving (11) exactly may be expensive and impractical due to the following
two reasons:

• The h(v) may have a complicated form, for example, general overlapping group sparsity
(Huang et al., 2011; Mairal et al., 2011; Schmidt et al., 2011), OSCAR(Bondell and
Reich, 2008), total variation (Beck and Teboulle, 2009), etc.

• The Bregman divergence leads to expensive computation for solving (11), for example,
one needs to compute inverse for the preconditioner matrix (Liu et al., 2019).

In practice, an approximate solution is obtained by employing some iterative algorithm
to solve the generalized proximal mapping (11) up to a prescribed accuracy. Algorithm 1
presents the APM with noise-corrupted gradient and approximate proximal mapping for
convex composite minimization (1). It only requires the generalized proximal mapping to
be solved approximately in expectation up to a certain precision so that vi is an εi-optimal
solution to (11) by Definition 5.

Definition 5 For strongly convex Ψi(v) and a non-negative scalar εi, vi is said to be an
εi-optimal solution to minv∈X Ψi(v) in expectation if E

[
Ψi(vi)− inf

v∈X
Ψi(v)

]
≤ εi.

4. Convergence Analysis

In this section, we present convergence analysis for Algorithm 1. For convenience, we assume
that ψ(x) is ξ-smooth w.r.t. ‖ · ‖. Our analysis approach builds on the approximate duality
gap technique (ADGT) (Diakonikolas and Orecchia, 2019). In Section 4.1, we define an
approximate duality gap for the optimal solution of (1). Then, in Section 4.2, we present a
generic convergence result without making any assumption on the gradient noise ηk. Finally,
we present specific convergence results for bounded and unbounded X in Sections 4.3 and
4.4, respectively.

4.1 Approximate Duality Gap

The key idea of ADGT is to first construct an upper bound Uk and a lower bound Lk to the
optimal function value P (x?) where x? = argminx∈X P (x) is the minimizer of P (x) over X ,

then use them to define an approximate optimality gap Gk
def
= Uk − Lk. Consequently, the
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convergence of Algorithm 1 can then be proved by showing Gk is converging. Specifically,
we analyze the evolution of AkGk where Ak =

∑k
i=1 ai. Note that Ak is monotonically

increasing, thus Gk is decreasing if AkGk is non-increasing.

We now describe the choices of the upper bound Uk and the lower bound Lk. It is
worth noting that their choices are critical for convergence analysis since ADGT proves the
convergence of optimization algorithms by tracking the evolution of Gk. It is naturally to
choose Uk

def
= P (yk) as the upper bound. To construct a lower bound Lk to P (x?), we can

apply the convexity of P (x). By the convexity of P (x),

P (x?) ≥
(
f(xk) +

〈
∇f(xk),x

? − xk
〉

+ h(x?)
)

+
1

ak
Dψ(x?,vk−1)− 1

ak
Dψ(x?,vk−1). (12)

Note that only inexact gradient oracle ∇̃f(xk) is available, thus we substitute ∇f(xk) =
∇̃f(xk)− ηk into (12),

P (x?) ≥
〈
∇̃f(xk),x

?−xk
〉
+

1

ak
Dψ(x?,vk−1)+h(x?)+f(xk)−〈ηk,x?−xk〉−

1

ak
Dψ(x?,vk−1).

Then, a lower bound Lk for P (x?) can be obtained by minimizing the right-hand side of
the above inequality. Formally, the Lk is defined as

Lk
def
=

`︷ ︸︸ ︷
min
v∈X

{〈
∇̃f(xk),v − xk

〉
+

1

ak
Dψ(v,vk−1) + h(v)

}
+f(xk)−〈ηk,x?−xk〉−

1

ak
Dψ(x?,vk−1),

(13)
where ` is essentially same as line 6 in Algorithm 1. Thus, the updating of vk is equivalent
to construct the lower bound Lk.

Given Uk and Lk, it is straightforward to show Gk = Uk−Lk ≥ P (yk)−P (x?). We will
prove the convergence of Gk by showing AkGk is non-increasing. To this end, we define

Ek
def
= AkGk −Ak−1Gk−1,∀k ≥ 1. (14)

As described in (Diakonikolas and Orecchia, 2019), if we treat Algorithm 1 as a discretization
of a underlying continuous-time dynamical system with Lyapunov function AkGk, then Ek
is the discretization error at iteration k. If Ei,∀i ≤ k are bounded, (14) leads to

Gk =
A1G1 +

∑k
i=2Ei

Ak
.

Thus, it suffices to bound the sum of Ei.

Relation with existing works. Note that the lower bound Lk defined in (13) bear
similarities with the approximate duality gap technique introduced by Diakonikolas and
Orecchia (2019). However, the lower bound Lk in (Diakonikolas and Orecchia, 2019; Cohen
et al., 2018; Diakonikolas and Orecchia, 2018) is constructed by a linear combination of all
xi, ∀i ≤ k seen so far. In contrast, our lower bound in (13) is constructed by only using the
latest xk. This construction for lower bound leads to several advantages when the lower
bound problem ` in (13) only be approximately solved. As we will see later, our method
simplifies the analysis but also leads to a tighter error bound.

10
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4.2 Generic Convergence Result

We start by analyzing the optimality condition of approximate solution vi to (8). To this
end, we first extend the definition of ε-subdifferential (Bertsekas et al., 2003) to include the
stochastic case.

Definition 6 (ε-subdifferential in expectation) Given a convex function f and a non-
negative scalar ε, the ε-subdifferential in expectation of f at x is defined as

∂εf(x)
def
=
{
w | ε ≥ E

[
f(x) + 〈w,y − x〉 − f(y)

]
, ∀y ∈ X

}
. (15)

Remark 1 If both f and x are deterministic, it reduces to the standard ε-subdifferential
(Bertsekas et al., 2003).

Since vi is an εi-optimal solution to (8) in expectation, the next lemma provides its εi-
subdifferential in expectation, that will play a key role for convergence analysis.

Lemma 2 If vi is a εi-optimal solution to (8) in expectation and ψ is ξ-smooth w.r.t. ‖ · ‖,
then there exists wi with E[‖wi‖2∗] ≤ 2ξεi/ai such that

1

ai

(
∇ψ(vi−1)−∇ψ(vi)

)
− ∇̃f(xi)−wi ∈ ∂εih(vi).

Proof For convenience, we define

Φi(v)
def
=
〈
∇̃f(xi),v

〉
+

1

ai
Dψ(v,vi−1).

Then, Ψi(v) defined in (11) can be rewritten as Ψi(v) = Φi(v) +h(v). By Definition 6, the
εi-subdifferential in expectation of Φi(v) at vi is

∂εiΦi(vi) =
{
w
∣∣ εi ≥ E

[
Φi(vi) + 〈w,v − vi〉 − Φi(v)

]
, ∀v ∈ X

}
.

It is equivalent to

∂εiΦi(vi) =

{
w
∣∣ εi ≥ E

[
max
v∈X

{
1

ai
Dψ(vi,vi−1) + 〈w − ∇̃f(xi),v − vi〉 −

1

ai
Dψ(v,vi−1)

}]}
.

It can be rewritten as

∂εiΦi(vi) =

{
w
∣∣ εi ≥ E

[
max
v∈X

{
1

ai

(
ψ(vi)− ψ(v)

)
+

〈
w − ∇̃f(xi) +

1

ai
∇ψ(vi−1),v − vi

〉}]}
.

Since ψ(v) is ξ-smooth w.r.t to ‖ · ‖, it implies

1

ai

(
ψ(vi)− ψ(v)

)
≥ − ξ

2ai
‖v − vi‖2 −

1

ai

〈
∇ψ(vi),v − vi

〉
.

11
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Applying this to the maximization term, we come up with

∂εiΦi(vi) ⊆

{
w
∣∣∣ εi ≥ E

[
max
v∈X

{ 〈
w − ∇̃f(xi)−

1

ai

(
∇ψ(vi)−∇ψ(vi−1)

)
,v − vi

〉
− ξ

2ai
‖v − vi‖2

}]}
.

Solving the maximization problem, it becomes

∂εiΦi(vi) ⊆
{

w
∣∣∣ 2ξεi
ai
≥ E

[∥∥∥w − ∇̃f(xi)−
1

ai

(
∇ψ(vi)−∇ψ(vi−1)

)∥∥∥2

∗

]}
.

Thus, for any z ∈ ∂εiΦi(vi), it must can be expressed as the form

z = ∇̃f(xi) +
1

ai

(
∇ψ(vi)−∇ψ(vi−1)

)
+ wi with E

[
‖wi‖2∗

]
≤ 2ξεi

ai
. (16)

By Definition 5, vi is an εi-optimal solution of Ψi(v) in expectation if and only if

E
[
Ψi(vi)− inf

v∈X
Ψi(v)

]
≤ εi.

Invoking Definition 6, this is equivalent to 0 belongings to the εi-subgradient in expectation
of Ψi(vi). Combining this with (Bertsekas et al., 2003, Proposition 4.3.1), we come up with

0 ∈ ∂εiΨi(vi) ⊂ ∂εiΦi(vi) + ∂εih(vi).

Therefore, there must exists some z such that z ∈ ∂εiΦi(vi) and −z ∈ ∂εih(vi). Invoking
(16), there must exist wi with E[‖wi‖2∗] ≤ 2ξεi/ai such that

1

ai

(
∇ψ(vi−1)−∇ψ(vi)

)
− ∇̃f(xi)−wi ∈ ∂εih(vi).

This completes the proof.

Given Lemma 2, the difference between Ψi(vi) and Ψi(v) can be bounded for any v.

Lemma 3 If vi is a εi-optimal solution to (8) in expectation and ψ is ξ-smooth w.r.t. ‖ · ‖,
then there exists wi with E[‖wi‖2∗] ≤ 2ξεi/ai such that, ∀v ∈ X ,

E
[
Ψi(vi) +

1

ai
Dψ(v,vi)−

〈
wi,v − vi

〉
−Ψi(v)

]
≤ εi.

Proof By the convexity of h(v), Definition 6 implies

E
[
h(vi) +

〈
w,v − vi

〉]
− εi ≤ h(v),∀w ∈ ∂εih(vi),v ∈ X .

12
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Applying Lemma 2, there exits wi with E[‖wi‖2∗] ≤ 2ξεi/ai such that

h(v) ≥ E
[
h(vi) +

〈
1

ai

(
∇ψ(vi−1)−∇ψ(vi)

)
− ∇̃f(xi)−wi,v − vi

〉]
− εi

= E
[
h(vi) +

1

ai

〈
∇ψ(vi−1),v − vi

〉
− 1

ai

〈
∇ψ(vi),v − vi

〉
−
〈
∇̃f(xi) + wi,v − vi

〉]
− εi

= E
[
h(vi) +

1

ai

〈
∇ψ(vi−1),v − vi−1

〉
− 1

ai

〈
∇ψ(vi−1),vi − vi−1

〉
− 1

ai

〈
∇ψ(vi),v − vi

〉
−
〈
∇̃f(xi) + wi,v − vi

〉]
− εi

= E
[
h(vi)−

1

ai
Dψ(v,vi−1) +

1

ai
Dψ(vi,vi−1) +

1

ai
Dψ(v,vi)−

〈
∇̃f(xi) + wi,v − vi

〉]
− εi.

By reorganizing both sides, it becomes

E
[
h(vi) +

〈
∇̃f(xi),vi

〉
+

1

ai
Dψ(vi,vi−1) +

1

ai
Dψ(v,vi)−

〈
wi,v − vi

〉
− εi

]
≤ E

[
h(v) +

〈
∇̃f(xi),v

〉
+

1

ai
Dψ(v,vi−1)

]
.

By the definition of Ψi(·), it can be written as

E
[
Ψi(vi) +

1

ai
Dψ(v,vi)−

〈
wi,v − vi

〉
−Ψi(v)

]
≤ εi.

This completes the proof.

Given Lemma 3, we are able to bound Ek for convex f(x) in the following lemma.

Lemma 4 Let xk,yk,vk evolve according to Algorithm 1 where vk is a εk-optimal solu-
tion in expectation to (11). We define Eek

def
= Ak

(
f(yk) − f(xk) −

〈
∇f(xk),yk − xk

〉)
−

Dψ(vk,vk−1). Then there exists wk with E[‖wk‖2∗] ≤ 2ξεk/ak such that,

E [Ek] ≤ E [Eek] + E
[
Eηk
]

+ E [Eεk] + E [Dψ(x?,vk−1)−Dψ(x?,vk)] ,∀k ≥ 1, (17)

where Eηk
def
= ak

〈
ηk,x

? − vk
〉

and Eεk
def
= ak

(〈
wk,x

? − vk
〉

+ εk
)
.

Proof From the definition of Ek,

Ek = AkGk −Ak−1Gk−1 = AkP (yk)−Ak−1P (yk−1)− akP (x?).

Substituting P (yk), it becomes

Ek = Ak
(
f(yk) + h(yk)

)
−Ak−1P (yk−1)− akP (x?)

= Ak
(
f(yk)− f(xk)−

〈
∇f(xk),yk − xk

〉)
+Ak

(
f(xk) +

〈
∇f(xk),yk − xk

〉
+ h(yk)

)
13
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−Ak−1P (yk−1)− akP (x?). (18)

By the definition of yk and convexity of h(·),

Ak
(
f(xk) +

〈
∇f(xk),yk − xk

〉
+ h(yk)

)
= Ak

{
f(xk) +

〈
∇f(xk),

Ak−1

Ak
yk−1 +

ak
Ak

vk − xk

〉
+ h

(
Ak−1

Ak
yk−1 +

ak
Ak

vk

)}
≤ Ak

{
f(xk) +

Ak−1

Ak

〈
∇f(xk),yk−1 − xk

〉
+
ak
Ak

〈
∇f(xk),vk − xk

〉
+
Ak−1

Ak
h(yk−1) +

ak
Ak

h(vk)

}
≤ Ak−1P (yk−1) + ak

(
f(xk) +

〈
∇f(xk),vk − xk

〉
+ h(vk)

)
. (19)

On the other hand, akP (x?) = ak
(
f(x?) + h(x?)

)
can be lower bounded as

akP (x?) ≥ ak
(
f(xk) +

〈
∇f(xk),x

? − xk
〉

+ h(x?)
)

+Dψ(x?,vk−1)−Dψ(x?,vk−1)

= ak

(〈
∇̃f(xk),x

? − xk
〉

+
1

ak
Dψ(x?,vk−1) + h(x?)

)
+ ak

(
f(xk)− 〈ηk,x? − xk〉 −

1

ak
Dψ(x?,vk−1)

)
.

Taking expectation for the left-hand side, we come up with

akP (x?) ≥ akE
[(〈
∇̃f(xk),x

? − xk

〉
+

1

ak
Dψ(x?,vk−1) + h(x?)

)]
+ akE

[(
f(xk)− 〈ηk,x? − xk〉 −

1

ak
Dψ(x?,vk−1)

)]
.

Applying Lemma 3 with v = x?, there exists wk with E[‖wk‖2∗] ≤ 2ξεk/ak such that

akP (x?)

≥ akE
[(〈
∇̃f(xk),vk − xk

〉
+

1

ak
Dψ(vk,vk−1) + h(vk) +

1

ak
Dψ(x?,vk)−

〈
wk,x

? − vk
〉
− εk

)]
+ akE

[(
f(xk)− 〈ηk,x? − xk〉 −

1

ak
Dψ(x?,vk−1)

)]
= akE [(f(xk) + 〈∇f(xk),vk − xk〉+ h(vk)) +Dψ(vk,vk−1) +Dψ(x?,vk)−Dψ(x?,vk−1)]

− akE [(〈ηk + wk,x
? − vk〉+ εk)] . (20)

Substituting (19) and (20) into (18), we obtain

E[Ek] ≤ AkE
[(
f(yk)− f(xk)−

〈
∇f(xk),yk − xk

〉)
−Dψ(vk,vk−1)

]
+ E

[
Dψ(x?,vk−1)−Dψ(x?,vk)

]
+ akE

[(〈
ηk + wk,x

? − vk
〉

+ εk
)]
.

By using the definitions of Eek, E
η
k and Eεk, it becomes

E [Ek] ≤ E [Eek] + E
[
Eηk
]

+ E [Eεk] + E [Dψ(x?,vk−1)−Dψ(x?,vk)] .

This completes the proof.

Note that Eηk is due to the inexact gradient oracle and Eεk is incurred from approximate
proximal mapping. Before proving the main results, we first introduce a proposition to
bound Eek that is useful for later analysis.
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Proposition 2 Assume f is L-smooth w.r.t. ‖ · ‖ and
a2k
Ak
≤ γ

L ,∀k ≥ 1. Let xk,yk,vk
evolve according to Algorithm 1 where vk is a εk-optimal solution in expectation to (11).
Then it holds that Eek ≤ 0,∀k ≥ 1.

Proof The proof is provided in Appendix A.1.

Then, without making further assumption on ηk, we have the following general conver-
gence result, which is a direct consequence of the Lemma 4 and Proposition 2.

Theorem 1 Assume f is L-smooth w.r.t. ‖ · ‖ and
a2k
Ak
≤ γ

L ,∀k ≥ 1. Let xk,yk,vk evolve
according to Algorithm 1 where vk is a εk-optimal solution in expectation to (11). Then,

E [Gk] ≤
1

Ak

(
Dψ(x?,x0) +

k∑
i=1

E [Eηi + Eεi ]

)
, (21)

where Eηi
def
= ai

〈
ηi,x

? − vi
〉

and Eεi
def
= ai

(〈
wi,x

? − vi
〉

+ εi
)
.

Proof It can be proved by applying Lemma 4. Applying Proposition 2, (17) becomes

E[Ei] = E[AiGi −Ai−1Gi−1] ≤ E [Dψ(x?,vi−1)−Dψ(x?,vi) + Eηi + Eεi ] . (22)

Substituting (22) into Gk, we obtain

E [AkGk +Dψ(x?,vk)] ≤ Dψ(x?,v0) +
k∑
i=1

(
E
[
Eηi
]

+ E
[
Eεi ]
)
. (23)

By noting Dψ(x?,vk) ≥ 0, it implies

AkE[Gk] ≤ Dψ(x?,v0) +

k∑
i=1

(
E
[
Eηi
]

+ E
[
Eεi ]
)
. (24)

This completes the proof.

Theorem 1 allows us to recover convergence rates both for PM and APM with different
choices of ak. When the gradient oracle is exact (noiseless) and the proximal mapping is
exactly solved, we have ηk = 0 and εk = 0,∀k ≥ 1. The following theorem gives the
convergence rate of Algorithm 1 in this ideal case.

Theorem 2 Assume f is L-smooth and
a2k
Ak
≤ γ

L ,∀k ≥ 1. Let xk,yk,vk evolve according
to Algorithm 1, where vk is an exact solution (i.e., εk = 0, ∀k ≥ 1) to (11). If the gradient
oracle is noiseless (i.e., ηk = 0,∀k ≥ 1), then

Gk ≤
Dψ(x?,x0)

Ak
, ∀k ≥ 1.
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Proof It can be proved by applying Theorem 1. Note that Eηi = 0, ∀i ≥ 1 holds since
ηi = 0. In addition, it is straightforward to show Eεi = 0 as vi is exact solution to (11)
that leads to εi = 0 and wi = 0, ∀i ≥ 1. Then, Theorem 2 can be proved by substituting
Eηi = 0 and Eεi = 0 into Theorem 1. This completes the proof.

Remark 2 In fact, we present a unified analysis method that covers both non-accelerated
and accelerated proximal methods for convex composite minimization (1). In particular, the
convergence rates of PM and APM can be obtained by a common convergence proof with
different choices of parameters ak. On the one hand, it is easy to see that ak = γ(k+1)

2L , ∀k ≥ 1

satisfies the condition
a2k
Ak
≤ γ

L . In this case, we have Ak = γk(k+3)
4L . Then, we come up with

Gk ≤
4LDψ(x?,x0)
γk(k+3) . This is essentially the optimal convergence rate O( 1

k2
) of accelerated first-

order algorithms for convex and smooth objectives (Nesterov, 1983). On the other hand,

setting ak to be a constant ak = γ
L is also valid for

a2k
Ak
≤ γ

L . In this case, we obtain Ak = kγ
L

and Gk ≤
LDψ(x?,x0)

γk . Indeed, it recovers non-accelerated first-order algorithms for convex

and smooth objectives with convergence rate O( 1
k ).

Next, we show the convergence of APM with inexact gradient oracle and approximate
proximal mapping. By controlling the gradient noise ηk, we will apply Theorem 1 to obtain
specific convergence rates.

4.3 Convergence for Bounded X

We first study the case when the domain X in (1) is bounded. By defining Rx?
def
=

supx∈X ‖x− x?‖, the domain X is said to be bounded if Rx? is bounded.

Theorem 3 Consider problem (1) where X is bounded. Assume f is L-smooth and
a2k
Ak
≤

γ
L ,∀k ≥ 1. Let xk,yk,vk evolve according to Algorithm 1, where vk is a εk-optimal solution
in expectation to (11). If {ηi}i≥1 are independent random variables, then ∀k ≥ 1:

E
[
Gk
]
≤ 1

Ak

(
Dψ(x?,x0) +Rx?

k∑
i=1

aiE
[
‖ηi‖∗

]
+

k∑
i=1

(
Rx?
√

2ξaiεi + aiεi

))
.

Proof It can be proved by applying Theorem 1. Specifically, E
[
Eηi
]

can be relaxed as

E
[
Eηi
]

= E
[
ai〈ηi,x? − vi〉

]
≤ aiE

[
‖ηi‖∗‖x? − vi‖

]
≤ Rx?aiE

[
‖ηi‖∗

]
, (25)

where the first inequality follows by applying dual norm inequality 〈x,y〉 ≤ ‖x‖∗‖y‖. On
the other hand, E

[
Eεi ] can be relaxed as

E
[
Eεi ] = E

[
ai〈wi,x

?−vi〉
]

+aiεi ≤ E
[
ai‖wi‖∗‖x?−vi‖

]
+aiεi ≤ Rx?

√
2ξaiεi+aiεi, (26)
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where the last inequality follows from E[‖wi‖∗] ≤
√
E[‖wi‖2∗] ≤

√
2ξεi/ai. Substituting

(25) and (26) into (24), AkE[Gk] becomes

AkE
[
Gk
]
≤ Dψ(x?,x0) +Rx?

k∑
i=1

aiE
[
‖ηi‖∗

]
+

k∑
i=1

(
Rx?

√
2ξaiεi + aiεi

)
.

Therefore, E[Gk] is upper bounded as

E
[
Gk
]
≤ 1

Ak

(
Dψ(x?,x0) +Rx?

k∑
i=1

aiE
[
‖ηi‖∗

]
+

k∑
i=1

(
Rx?
√

2ξaiεi + aiεi

))
.

This completes the proof.

Remark 3 In fact, the same bound on E
[
Gk
]

as Theorem 3 holds even if {ηi}i≥1 are not
independent but E

[
‖ηi‖∗

]
≤ σ,E

[
‖ηi‖2∗

]
≤ δ, ∀i. Under this condition, we have

E
[
Gk
]
≤ 1

Ak

(
Dψ(x?,x0) + σRx?Ak +

k∑
i=1

(
Rx?
√

2ξaiεi + aiεi

))
, ∀k ≥ 1.

For smooth objectives, Cohen et al. (2018) demonstrate that the presence of domain
boundary makes accelerated methods more robust with inexact gradient oracle, as the
boundary of the feasible set limits the variance. Unlike (Cohen et al., 2018), the convex
composite minimization problem (1) can be rewritten as an equivalent constrained opti-
mization problem even it is unconstrained. Next, we show that the stronger regularization
makes accelerated methods more robust with inexact gradient oracle when the non-smooth
h(x) is a regularization. Without loss of generality, we assume that h(x) can be written

as h(x)
def
= λg(x) where λ is a regularization parameter and g(x) is a regularization, e.g.,

g(x) = ‖x‖1. By doing so, (1) becomes

min
x∈X

P (x)
def
= f(x) + λg(x). (27)

The larger value of λ leads to the stronger regularization. Let x?λ be the optimal solution
of (27) when the value of regularization parameter is λ. The next proposition discusses the
effect of regularization parameter λ to the robustness of Algorithm 1 with inexact gradient
oracle.

Proposition 3 We consider the case of X = Rn, i.e., (27) is an unconstrained optimization
problem. The problem (27) is equivalent to

min
x
f(x) s.t. g(x) ≤ Cλ where Cλ

def
= g(x?λ). (28)

Let x̂?λ be the optimal solution to (28) when the constraint parameter is Cλ. It holds that
f(x̂?λ) = f(x?λ) and g(x̂?λ) = g(x?λ). As the increase of λ, Algorithm 1 becomes more robust
with inexact gradient oracle because Cλ is decreased.
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Proof We first prove the equivalence between (27) and (28). The optimality condition of
x̂?λ to (28) implies

f(x̂?λ) ≤ f(x?λ) and g(x̂?λ) ≤ g(x?λ). (29)

Combining them together, we obtain

f(x̂?λ) + λg(x̂?λ) ≤ f(x?λ) + λg(x?λ). (30)

On the other hand, the optimality condition of x?λ to (27) implies

f(x?λ) + λg(x?λ) ≤ f(x̂?λ) + λg(x̂?λ). (31)

Combining (30) and (31), we come up with

f(x?λ) + λg(x?λ) = f(x̂?λ) + λg(x̂?λ).

Invoking (29), we come up with f(x?λ) = f(x̂?λ) and g(x?λ) = g(x̂?λ). Thus, the problem (27)
is equivalent to (28).

Next, we prove the effect of λ to the robustness of Algorithm 1. For any λ1 ≤ λ2,
we show that Cλ1 ≥ Cλ2 . Let x̂?λ1 and x̂?λ2 be the optimal solutions of (28) with different
constraint parameters Cλ1 and Cλ2 , respectively. By the equivalence between (27) and (28),
x̂?λ1 and x̂?λ2 are also the optimal solutions of (27) when the regularization parameter are
λ1 and λ2, respectively. Their optimality conditions imply

f(x̂?λ1) + λ1g(x̂?λ1) ≤ f(x̂?λ2) + λ1g(x̂?λ2),

f(x̂?λ2) + λ2g(x̂?λ2) ≤ f(x̂?λ1) + λ2g(x̂?λ1).

Summing up the above two inequalities, we obtain

(λ1 − λ2)
(
g(x̂?λ1)− g(x̂?λ2)

)
≤ 0.

Since λ1 ≤ λ2, it implies g(x̂?λ1) ≥ g(x̂?λ2), thus Cλ1 ≥ Cλ2 . We define Xλ1
def
= {x | g(x) ≤

Cλ1} and Xλ2
def
= {x | g(x) ≤ Cλ2}. It is straightforward to show Xλ2 ⊆ Xλ1 . By the

definition of Rx? , we have Rx?λ2
≤ Rx?λ1

due to Xλ2 ⊆ Xλ1 . Invoking Theorem 2, E
[
Gk
]

and Var
[
Gk
]

increase linearly and quadratically with respect to Rx? , respectively. Thus,
Algorithm 1 becomes more robust with inexact gradient oracle as the increase of λ because
Rx? becomes smaller.

4.4 Convergence for Unbounded X

The results presented in Theorem 3 only hold for the case when X is bounded. However, in
many machine learning problems, the domain X is unbounded, e.g., X = Rn. To study the
convergence rate of Algorithm 1 for the case of unbounded domain, we present theoretical
results in the following theorem by assuming that the noise samples {ηi}i≥1 are zero-mean
and independent.
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Theorem 4 Assume f is L-smooth and
a2k
Ak
≤ γ

L ,∀k ≥ 1. Let xk,yk,vk evolve according
to Algorithm 1, where vk is a εk-optimal to (11) in expectation and {ηi}i≥1 are zero-mean
and independent random variables. Then ∀k ≥ 1:

E[Gk] ≤
1

Ak

3

2
Dψ(x?,x0) +

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
+

(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2
 . (32)

Proof It can be proved by following the proof of Theorem 1. Applying E
[
Dψ(x?,vk)

]
≥

γ
2E[‖x? − vk‖2] to (23), it becomes

AkE[Gk] +
γ

2
E[‖x? − vk‖2] ≤ Dψ(x?,v0) +

k∑
i=1

E
[
Eηi
]

+

k∑
i=1

E
[
Eεi
]
. (33)

Bounding E
[
Eηi
]
:

We define v̂?i
def
= ∇ψ∗i

(
∇ψ(vi−1)− ai∇f(xi)

)
= ∇ψ∗i

(
zi + aiηi

)
that is the optimal solution

to (11) when both gradient oracle and proximal mapping are exact. Then, E
[
Eηi
]

can be
written as

E
[
Eηi
]

= E
[
ai〈ηi,x? − v̂?i

〉]
+ E

[
ai〈ηi, v̂?i − v?i

〉]
+ E

[
ai〈ηi,v?i − vi

〉]
. (34)

By the fact that v̂?i is independent of ηi and E[ηi] = 0, we note that

E
[
ai〈ηi,x? − v̂?i

〉]
= 0. (35)

Regarding E
[
ai〈ηi, v̂?i − v?i

〉]
, it can be relaxed as

E
[
ai〈ηi, v̂?i − v?i

〉]
≤ aiE

[
‖ηi‖∗‖v̂?i − v?i ‖

]
≤ aiE

[
‖ηi‖∗

1

γ
‖zi + aiηi − zi‖∗

]
≤ a2

i

γ
E
[
‖ηi‖2∗

]
,

(36)
where the second inequality follows from ψ is γ-strongly convex w.r.t. ‖ · ‖ and Lemma 1.
The strong convexity of Ψi(v) and definition of vi lead to

εi ≥ E
[
Ψi(vi)−Ψi(v

?
i )
]
≥ γ

2ai
E
[
‖vi − v?i ‖2

]
≥ γ

2ai

(
E
[
‖vi − v?i ‖

])2
.

Thus, E
[
ai〈ηi,v?i − vi

〉]
can be bounded as

E
[
ai〈ηi,v?i − vi

〉]
≤ aiE

[
‖ηi‖∗‖v?i − vi‖

]
≤

√
2a3

i εi
γ

E
[
‖ηi‖∗

]
. (37)

Bounding E
[
Eεi
]
:

It can be bounded as

E
[
ai
(〈

wi,x
?−vi

〉
+εi

)]
≤ aiεi+aiE

[
‖wi‖∗‖x?−vi‖

]
≤ aiεi+

√
2ξaiεiE

[
‖x?−vi‖

]
. (38)
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where the last inequality follows from ‖wi‖2∗ ≤ 2ξεi/ai.
Now we are ready to prove (32). Substituting (35), (36) and (37) into (34), we obtain

E
[
Eηi
]
≤ a2

i

γ
E
[
‖ηi‖2∗

]
+

√
2a3

i εi
γ

E
[
‖ηi‖∗

]
. (39)

Substituting (38) and (39) into (33),

AkE[Gk] +
γ

2
E
[
‖x? − vk‖2

]
(40)

≤ Dψ(x?,v0) +
k∑
i=1

(
a2
i

γ
E
[
‖ηi‖2∗

]
+

√
2a3

i εi
γ

E
[
‖ηi‖∗

]
+ aiεi

)
+

k∑
i=1

√
2ξaiεiE

[
‖x? − vi‖

]
.

Note that √
2a3

i εi
γ

E
[
‖ηi‖∗

]
=

√
2a2

i

γ
E
[
‖ηi‖∗

]√
aiεi ≤

a2
i

γ
E
[
‖ηi‖2∗

]
+

1

2
aiεi,

where the last inequality follows from ab ≤ 1
2(a2 + b2) and (E[X])2 ≤ E[X2]. Substituting

this result into (40),

AkE[Gk] +
γ

2
E
[
‖x? − vk‖2

]
≤ Dψ(x?,v0) +

k∑
i=1

(
2a2

i

γ
E
[
‖ηi‖2∗

]
+

3

2
aiεi

)
+

k∑
i=1

√
2ξaiεiE

[
‖x? − vi‖

]
. (41)

Since E[Gk] ≥ 0, it implies

γ

2
E
[
‖x? − vk‖2

]
≤ Dψ(x?,v0) +

k∑
i=1

(
2a2

i

γ
E
[
‖ηi‖2∗

]
+

3

2
aiεi

)
+

k∑
i=1

√
2ξaiεiE

[
‖x? − vi‖

]
.

Applying Lemma 6 with Sk
def
= Dψ(x?,v0) +

∑k
i=1

(
2a2i
γ E

[
‖ηi‖2∗

]
+ 3

2aiεi

)
, ϑi

def
= 2

√
ξ
γaiεi

and ui
def
=
√

γ
2E
[
‖x? − vi‖

]
, we obtain

Dψ(x?,v0) +
k∑
i=1

(
2a2

i

γ
E
[
‖ηi‖2∗

]
+

3

2
aiεi

)
+

k∑
i=1

√
2ξaiεiE

[
‖x? − vi‖

]
≤ 3

2

Dψ(x?,v0) +

k∑
i=1

(
2a2

i

γ
E
[
‖ηi‖2∗

]
+

3

2
aiεi

)
+

(
k∑
i=1

2
√

ξ
γaiεi

)2


≤ 3

2
Dψ(x?,v0) +

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
+

(
9

4
+ 4
√

ξ
γ

)( k∑
i=1

√
aiεi

)2

.

Substituting it into (41), we come up with

E[Gk] ≤
1

Ak

3

2
Dψ(x?,x0) +

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
+

(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2
 .
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This completes the proof.

Next, we present several corollaries of Theorem 4 to recover both accelerated and non-
accelerated proximal methods for various cases and compare our results with related works.
We generally assume the noisy gradient oracle and approximate proximal mapping satisfy
E
[
‖ηi‖22] ≤ σ2, εi ≤ ε, ∀i ≥ 1. Convergence results for exact gradient oracle and proxi-

mal mapping can be also recovered naturally from the corollaries. We start by applying
Theorem 4 with step-size ai = γ(i+1)

2L and ai = γ
L , which present convergence rates of accel-

erated and non-accelerated proximal methods for convex composite minimization problems,
respectively.

Corollary 1 Consider the same setting as Theorem 4 and assume E
[
‖ηi‖2∗] ≤ σ2, εi ≤

ε, ∀i ≥ 1, where σ2 and ε are constants. For APM with ai = γ(i+1)
2L , ∀i ≥ 1, we have

E[Gk] ≤
6LDψ(x?,x0)

γk(k + 3)
+

(2k + 3)σ2

L
+

(
6 +

32

3

√
ξ

γ

)
(k + 2)ε, ∀k ≥ 1. (42)

For PM with ai = γ
L , ∀i ≥ 1, we have

E[Gk] ≤
3LDψ(x?,x0)

2γk
+

3σ2

L
+

(
9

4
+ 4

√
ξ

γ

)
kε,∀k ≥ 1. (43)

Consider the special case in which both gradient oracle and proximal mapping are exact
(i.e., ηi = 0, εi = 0, ∀i ≥ 1), (42) and (43) recover the O(1/k2) (accelerated) and O(1/k)
(non-accelerated) convergence rates for convex composite objectives, respectively.

Remark 4 The Corollary 1 suggests both noisy gradient oracle and approximate proximal
mapping lead to error accumulation1 for accelerated proximal methods. In contrast, the noisy
gradient oracle does not lead to error accumulation for non-accelerated proximal methods.
Thus, the acceleration comes at the expense of being less robust to noisy gradient oracle and
approximate proximal mapping.

For unbound composite minimization, Theorem 4 suggests that the acceleration leads to
error accumulation for APM with noisy gradient oracle and proximal mapping as we have
ak ∼ O(k) and Ak ∼ O(k2). Thus, the APM may fail to attain the optimal convergence
rate, even produce divergent result. Nevertheless, the error accumulation of APM can be
avoided if we postulate the magnitude of gradient noise (i.e., {E

[
‖ηi‖2∗

]
}i≥1) and error of

approximate proximal mapping (i.e., {εi}i≥1) vanishes with the number of iterations. This
can be achieved if the estimates of the gradient and the proximal mapping improve over
iterations (Atchadé et al., 2017; Devolder et al., 2014).

1. Following (Devolder et al., 2014; Cohen et al., 2018), the bound on the error incurred due to noisy
gradient oracle or approximate proximal mapping does not accumulate if it is not increased as the
number of iterations, otherwise there is error accumulation.
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Table 1: Comparisons of convergence bound on gradient noise variance and proximal map-
ping error for convex composite minimization by assuming E

[
‖ηi‖22] ≤ σ2, εi ≤

ε, ∀i ≥ 1.

Method σ2 ε

Accelerated
(Schmidt et al., 2011, Proposition 2) O(k2) O(k2)
(Kulunchakov and Mairal, 2019a, Proposition 4) O(k) O(k2)
Ours (59) O(k) O(k)

Non-accelerated
(Schmidt et al., 2011, Proposition 1) O(k) O(k)
Ours (60) O(1) O(k)

Corollary 2 Under the same setting as Theorem 4, we assume that E
[
‖ηi‖2∗

]
≤ σ2(i+1)−p

and εi ≤ ε(i + 1)−q hold for some δ, ε, p, q. Set ai = γ(i+1)
2L for APM. For noisy gradient

oracle and inexact proximal mapping, if p > 3 and q > 3, ∀k ≥ 1:

E
[
Gk
]
≤ 1

k(k + 3)

(
6LDψ(x?,x0)

γ
+

3σ2

L(p− 3)
+

18γ + 32
√
γξ

γ(q − 3)2

)
. (44)

Set ai = γ
L for PM. For noisy gradient oracle and proximal mapping, if p > 1 and q > 2,

∀k ≥ 1:

E
[
Gk
]
≤ 1

k

(
3LDψ(x?,x0)

2γ
+

3σ2

L(p− 1)
+

9γ + 16
√
γξ

γ(q − 2)2
ε

)
. (45)

Remark 5 For APM with approximate proximal mapping, our work suggests that the
optimal convergence rate can be preserved if {εi}i≥1 vanishes faster than O(1/k3) while it
requires at least O(1/k4) (Kulunchakov and Mairal, 2019a; Schmidt et al., 2011). This is
consistent with the comparison presented in Section 4.4.1.

4.4.1 Comparisons with Existing Works with Convexity

To understand the novelty of our results, we provide detailed comparisons with them under
the same setting as Corollary 1, i.e., E

[
‖ηi‖22] ≤ σ2, εi ≤ ε, ∀i ≥ 1, where σ2 and ε are

constants.

Acceleration with noisy gradient oracle and inexact proximal mapping has
also been studied in (Kulunchakov and Mairal, 2019a; Schmidt et al., 2011). Following
the setting of (Kulunchakov and Mairal, 2019a), we set κ = L for convex objectives (i.e.,
µ = 0). As shown in (11) of (Kulunchakov and Mairal, 2019a), we have δj = σ2/L. Then,
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the Proposition 4 of (Kulunchakov and Mairal, 2019a) implies

E
[
P
(
xk
)
− P

(
x?
)]
≤ 2e1+γ

(k + 1)2

L‖x0 − x?‖2 +
k∑
j=1

(j + 1)2σ
2

L
+

k∑
j=1

(j + 1)3+γε

γ

 .

It is easy to see that (j+1)3+γ > (j+1)3 for any γ ∈ (0, 1]. For convenience, we approximate
(j + 1)3+γ by (j + 1)3. Consequently, the error bound of (Kulunchakov and Mairal, 2019a)
is at least

E [P (xk)− P (x?)] ≤ 2e1+γL‖x0 − x?‖2

(k + 1)2
+
e1+γ(2k + 6)σ2

3L
+
e1+γ

2γ
(k + 2)2ε. (46)

Similarly, the Proposition 2 of (Schmidt et al., 2011) implies

P (xk)− P (x?) ≤ 2L

(k + 1)2

‖x0 − x?‖2 + 2
k∑
i=1

i

(
σ

L
+

√
2ε

L

)
+

√√√√2
k∑
i=1

i2ε

L

2

.

It can be rewritten as

P (xk)− P (x?) ≤ 6L‖x0 − x?‖2

(k + 1)2
+

6k2σ2

L
+

4

3L
(3k2 + k)ε. (47)

In addition, Schmidt et al. (2011) also studied the convergence rate of non-accelerated
proximal methods. Specifically, the Proposition 1 of (Schmidt et al., 2011) implies

P (xk)− P (x?) ≤ 3L‖x0 − x?‖22
2k

+
3kσ2

2L
+ 12kε. (48)

Table 1 summarizes the detailed comparisons of (42) and (43) with (46), (47) and (48).
From the comparison, we obtain the following conclusions:

• For the case of acceleration, our result is better than (Schmidt et al., 2011) in terms
of both noisy gradient variance and approximate proximal mapping error and tighter
than (Kulunchakov and Mairal, 2019a) in term of approximate proximal mapping
error.

• For the case of without acceleration, our result is better than (Schmidt et al., 2011)
in terms of noisy gradient variance.

Acceleration with noisy gradient oracle but exact proximal mapping has also been
studied in (Kulunchakov and Mairal, 2020; Cohen et al., 2018; Ghadimi and Lan, 2012).
Next, we show that our method also achieves the optimal sublinear convergence rate for
finite horizon as aforementioned works.
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Algorithm 2 Inexact APM for Strongly Convex Composite Minimization (1)

1: Input: starting point x0, strongly convex parameter µ
2: A0 = 1 and y0 = v0 = x0

3: for i = 1 to k do
4: Set Ai := Ai−1 + ai
5: Set xi := Ai

Ai+ai
yi−1 + ai

Ai+ai
vi−1

6: Solve

vi ≈ argmin
v

{〈
∇̃f(xi),v

〉
+ µ

2‖v − xi‖2 + µAi−1

ai
Dψ(v,vi−1) + h(v)

}
(51)

such that Ψi(vi)−Ψi(v
?
i ) ≤ εi.

7: Set yi := Ai−1

Ai
yi−1 + ai

Ai
vi

8: end for
9: Output: yk

Corollary 3 Under the same setting as Corollary 1 but the proximal mapping is exact,
i.e., ε = 0. Consider a fixed budget K of iterations of Algorithm 1. If ai = (i+1)ζ

2 where

ζ = min

(
γ
L ,
√

3γDψ(x?,x0)

2σ2(K+1)3

)
, then

E[GK ] ≤
3LDψ(x?,x0)

γ(K + 1)2
+ σ

√
6Dψ(x?,x0)

γ(K + 1)
. (49)

If ai = min

(
γ
L ,

1
σ

√
γDψ(x?,x0)

2K

)
, then

E[GK ] ≤
3LDψ(x?,x0)

2γK
+ 3σ

√
Dψ(x?,x0)

2γK
. (50)

Similar to (Kulunchakov and Mairal, 2020), (49) and (50) show that our analysis is able to
recover the optimal noise-dependency for accelerated (Ghadimi and Lan, 2013) and non-
accelerated (Nemirovski et al., 2009) stochastic first-order optimization, respectively.

5. APM for Strongly Convex Composite Minimization

In this section, we extend the study to µ-strongly convex f(x). In this case, we slightly
modify Algorithm 1 by considering the strong convexity of f(x). Following the customary
for smooth and strongly convex minimization (Nesterov, 2013; Bubeck, 2015; Cohen et al.,
2018), we assume that ‖ · ‖ = ‖ · ‖2 so that f(x) is L-smooth and µ-strongly w.r.t. the `2
norm in this setting. We take ψ(x) = 1

2‖x‖
2
2 (i.e., γ = 1, ξ = 1) for simplicity as in (Cohen

et al., 2018). Throughout this section, we only consider the case of X is unbounded, i.e.,
X = Rn.
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Next, we apply the same idea presented in Section 4.1 to construct the approximate
duality gap for µ-strongly convex f(x). Same as before, we choose Uk = P (yk) as the
upper bound to P (x?) where yk is the current solution. To construct a lower bound Lk to
P (x?), we apply the µ-strong convexity of P (x).

P (x?) ≥ f(xk) +
〈
∇f(xk),x

? − xk
〉

+
µ

2
‖x? − xk‖2 + h(x?) +

µAk−1

ak
Dψ(x?,vk−1)

− µAk−1

ak
Dψ(x?,vk−1). (52)

Substituting ∇f(xk) = ∇̃f(xk)− ηk into (52), we obtain

P (x?) ≥
〈
∇̃f(xk),x

? − xk
〉

+
µ

2
‖x? − xk‖2 +

µAk−1

ak
Dψ(x?,vk−1) + h(x?)

+ f(xk)− 〈ηk,x? − xk〉 −
µAk−1

ak
Dψ(x?,vk−1).

Minimizing the right-hand side with respect to x?, we obtain the lower bound Lk as following

Lk
def
= min

v

{〈
∇̃f(xk),v − xk

〉
+
µ

2
‖v − xk‖2 +

µAk−1

ak
Dψ(v,vk−1) + h(v)

}
(53)

+ f(xk)− 〈ηk,x? − xk〉 −
µAk−1

ak
Dψ(x?,vk−1).

In view of (53), we define the following minimization problem for µ-strongly f(x):

v?i
def
= argmin

v

{ Ψi(v)︷ ︸︸ ︷〈
∇̃f(xi),v

〉
+ µ

2‖v − xi‖2 + µAi−1

ai
Dψ(v,vi−1) + h(v)

}
. (54)

In addition, the update of xi in Algorithm 1 is changed as

xi :=
Ai

Ai + ai
yi−1 +

ai
Ai + ai

vi−1.

For initialization, we set y0 = v0 = x0 and A0 = 1. Algorithm 2 presents the detailed
inexact APM for µ-strongly convex f(x).

Similar to Section 4.1, we prove the convergence of Algorithm 2 by showing the approx-
imate duality gap Gk = Uk − Lk is converged. Note that Ek = AkGk − Ak−1Gk−1, ∀k ≥ 1,
thus

AkGk = A0G0 +

k∑
i=1

Ei, (55)

where initial gap G0 is given by G0 = P (x0) − P (x?) as y0 is initialized to be x0. In
Section 5.1, we present a generic convergence result for Gk. Then, we apply it to obtain
various specific convergence results in Section 5.2.
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5.1 Generic Convergence Result

In view of (55), the main convergence argument is to bound Ek,∀k ≥ 1. To bound it, we
need to first establish the upper bound of approximate vk that is presented in Lemma 8
of Appendix B. By applying it, we can bound Ek, ∀k ≥ 1, for µ-strongly convex f(x) as
follows.

Lemma 5 Let xk,yk,vk evolve according to Algorithm 2 where vk is a εk-optimal solution

to (51) in expectation. If f(x) is µ-strongly convex and 0 < ak
Ak
≤
√

µ
L , then there exists

wk with E[‖wk‖22] ≤ 2µAkεk
ak

such that,

E[Ek] ≤ E
[
Eηk + Eεk +

µAk−1

2
‖x? − vk−1‖22 −

µAk
2
‖x? − vk‖22

]
, ∀k ≥ 1, (56)

where Eηk
def
= ak

〈
ηk,x

? − vk
〉

and Eεk
def
= ak

(〈
wk,x

? − vk
〉

+ εk
)
.

Proof The detailed proof is provided in Appendix B.1.

Same as before, Eηk comes from inexact gradient oracle and Eεk is incurred from approximate
proximal mapping. Given Lemma 5, Gk can be bounded by applying AkGk = A0G0 +∑k

i=1Ei. We define

∆k
def
= Gk +

µ

2
‖x? − vk‖2 and Θk

def
=

k∏
i=1

(1− θi),

where θi = ai
Ai
, ∀i ≥ 1. In the next theorem, we prove a generic convergence result for the

∆k.

Theorem 5 Let xk,yk,vk evolve according to Algorithm 2, where vk is a εk-optimal solu-
tion to (51) in expectation. If f(x) is µ-strongly convex and ∆0 = P (x0)−P (x?) + µ

2‖x0−
x?‖22, A0 = 1, 0 < θi = ai

Ai
≤
√
µ/L, ∀i ≥ 1, then there exists wi with E

[
‖wi‖22

]
≤ 2µAiεi/ai

such that,

E [∆k] ≤ ΘkE
[
∆0 +

k∑
i=1

θi
Θi

(〈
wi + ηi,x

? − vi
〉

+ εi
)]
, ∀k ≥ 1. (57)

Proof It can be proved by applying Lemma 5. The detailed proof is provided in Ap-
pendix B.2.

In the next section, we apply Theorem 5 and bound these error terms in (57) to present
various specific convergence results.
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5.2 Specific Convergence Results

Here, we show that both accelerated and non-accelerated convergence rates can be recovered
from Theorem 5 with different choices of ai

Ai
. The next theorem presents the convergence

result for the case of ai
Ai

= β is fixed for all iterations.

Theorem 6 Under the same setting as Theorem 5, let ∆0 = P (x0)−P (x?) + µ
2‖x0−x?‖22

and {ηi}i≥1 are zero-mean and independent random variables. If θi = ai
Ai

= β and β ≤√
µ/L, then

E[Gk] ≤
(
1− β

)k (3

2
∆0 +

3β2

µ
G̃ηk +

25β

4
G̃εk

)
, (58)

where

G̃ηk
def
=

k∑
i=1

(
1− β

)−iE [‖ηi‖22] and G̃εk
def
=

(
k∑
i=1

(
1− β

)−i/2√
εi

)2

.

Proof The detailed proof is provided in Appendix B.3.

Remark 6 In fact, same as the case of general convex, Theorem 6 presents a unified con-
vergence results for both accelerated and non-accelerated first-order proximal methods for
µ-strongly convex composite minimization. Specifically, if both the gradient oracle and prox-
imal mapping are exact, Theorem 6 reduces to

E[Gk] ≤
3

2
∆0

(
1− β

)k
.

It is easy to see that both ai
Ai

= β =
√
µ/L and ai

Ai
= β = µ/L satisfy the condition presented

in Theorem 6, that lead to the convergence results of accelerated and non-accelerated first-
order proximal methods, respectively.

Next, we present several corollaries of Theorem 6 to recover both accelerated and non-
accelerated proximal methods for various cases and compare our results with related works.
Same as before, we assume the noisy gradient oracle and approximate proximal mapping
satisfy E

[
‖ηi‖22] ≤ σ2, εi ≤ ε, ∀i ≥ 1. We start by applying Theorem 6 with ai

Ai
= β =

√
µ/L

and ai
Ai

= β = µ/L, which present accelerated and non-accelerated proximal methods for
strongly convex objectives, respectively.

Corollary 4 Consider the same setting as Theorem 6, where f is µ-strongly convex, ∆0 =
P (x0) − P (x?) + µ

2‖x0 − x?‖22. Assume E
[
‖ηi‖22] ≤ σ2 and εi ≤ ε,∀i ≥ 1, where σ2 and ε

are constants. If we set β =
√
µ/L, then (58) recovers the accelerated convergence rate of

first-order proximal methods

E[Gk] ≤
3

2

(
1−

√
µ

L

)k
∆0 +

3σ2

√
µL

+ 25

√
L

µ
ε. (59)
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Table 2: Comparisons of error bounds on gradient noise variance and proximal mapping
error for strongly convex composite minimization by assuming E

[
‖ηi‖22] ≤ σ2, εi ≤

ε, ∀i ≥ 1.

Method σ2 ε

Accelerated
(Schmidt et al., 2011, Proposition 4) O

(
L
µ2

)
O

((
L
µ

)2
)

(Kulunchakov and Mairal, 2019a, Proposition 4) O
(

1√
µL

)
O
(
L
µ

)
Ours (59) O

(
1√
µL

)
O
(√

L
µ

)
Non-accelerated Ours (60) O

(
1
L

)
O
(
L
µ

)

If we set β = µ/L, then (58) recovers the non-accelerated convergence rate of first-order
proximal methods

E[Gk] ≤
3

2

(
1− µ

L

)k
∆0 +

3σ2

L
+

25L

µ
ε. (60)

5.2.1 Comparisons with Existing Works with Strong Convexity

Same as Section 4.4.1, we also compare our results with related works under the same
setting as Corollary 4, i.e., E

[
‖ηi‖22] ≤ σ2, εi ≤ ε, ∀i ≥ 1, where σ2 and ε are constants.

Acceleration with noisy gradient oracle and inexact proximal mapping has
also been studied in (Kulunchakov and Mairal, 2019a; Schmidt et al., 2011). Following
the setting of (Kulunchakov and Mairal, 2019a), we set κ = L − µ for µ-strongly convex
objectives. As shown in (11) of (Kulunchakov and Mairal, 2019a), we have δj = σ2/L.
Then, the Proposition 4 of (Kulunchakov and Mairal, 2019a) implies

E
[
P (xk)−P (x?)

]
≤
(

1− 1

2

√
µ

L

)k2
(
P (x0)− P (x?)

)
+ 4

k∑
j=1

(
1− 1

2

√
µ

L

)−j (
σ2

L
+

√
L

µ
ε

) .

Relaxing the right-hand side, it becomes

E
[
P (xk)− P (x?)

]
≤ 2

(
1− 1

2

√
µ

L

)k (
P (x0)− P (x?)

)
+

8σ2

√
µL

+
8L

µ
ε. (61)

Similarly, the Proposition 4 of (Schmidt et al., 2011) implies

P (xk)− P (x?)
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≤
(

1−
√
µ

L

)k√2 (P (x0)− P (x?)) +

√
2

µ

k∑
i=1

(
1−

√
µ

L

)−1
2 (

σ +
√

2Lε
)

+

√√√√ k∑
i=1

(
1−

√
µ

L

)i
ε

2

.

It can be further relaxed as

P (xk)− P (x?) ≤ 6

(
1−

√
µ

L

)k (
P (x0)− P (x?)

)
+

24L

µ2
σ2 +

(
96L2

µ2
+

24L

µ
ε

)
. (62)

Same as the convex case, Schmidt et al. (2011) also studied the convergence rate of non-
accelerated proximal methods, i.e., the Proposition 3 of (Schmidt et al., 2011). However,
they presented the convergence rate of ‖xk − x?‖ instead of (P (xk) − P (x?)). In the case
of inexact proximal mapping, it is not straightforward to obtain the convergence rate of
(P (xk)−P (x?)) from that of ‖xk − x?‖. Thus, we do not present the comparison with the
Proposition 3 of (Schmidt et al., 2011).

Table 2 summarizes the detailed comparisons of (59) and (60) with (61) and (62). From
the comparison, we observe that our result is better than (Schmidt et al., 2011) in terms
of both noisy gradient variance and approximate proximal mapping error and tighter than
(Kulunchakov and Mairal, 2019a) in term of approximate proximal mapping error. In
particular, the advantages of our convergence bound is more significant when the problem
is badly conditioned, i.e., L� µ.

Acceleration with noisy gradient oracle but exact proximal mapping has also
been studied in (Kulunchakov and Mairal, 2020; Cohen et al., 2018; Ghadimi and Lan,
2013). Next, we show that our method also achieves the optimal complexity similar to
aforementioned works. We first derive a specific convergence result for this case by applying
Theorem 5 with εi = 0 and wi = 0,∀i.

Theorem 7 Under the same setting as Theorem 5 but the proximal mapping is exact, i.e.,
εi = 0 and wi = 0. If θi = ai

Ai
≤
√
µ/L, then

E [∆k] ≤ Θk

(
∆0 +

1

µ

k∑
i=1

θ2i
Θi

E
[
‖ηi‖22

])
,∀k ≥ 1. (63)

Assume E
[
‖ηi‖22] ≤ σ2,∀i ≥ 1, where σ2 is a constant. If we set θi =

√
µ/L,∀i ≥ 1, then

(63) recovers the accelerated convergence rate of first-order proximal methods

E [∆k] ≤
(

1−
√
µ

L

)k
∆0 +

σ2

√
µL

. (64)

If we set θi = µ/L, ∀i ≥ 1, then (63) recovers the non-accelerated convergence rate of
first-order proximal methods

E [∆k] ≤
(

1− µ

L

)k
∆0 +

σ2

L
. (65)
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The detailed proof of Theorem 7 is provided in Appendix B.3.

Next, we show that the worst-case complexity can be improved by a restart mecha-
nism with decreasing θi, then we obtain an algorithm with optimal complexity similar to
(Kulunchakov and Mairal, 2019a, 2020; Ghadimi and Lan, 2013). Suppose we aim to ob-
tain a solution yk such that E

[
P (yk) − P (x?) + µ

2‖yk − x?‖22] ≤ ε where ε ≤ 2σ2/
√
µL

and ε ≤ 2σ2/L for accelerated and non-accelerated proximal methods, respectively. The
detailed procedure is presented in Algorithm 3.

Algorithm 3 Inexact APM with Restart

1: Input: starting point x0, strongly convex parameter µ

2: Stage 1: Use x0 as the initialization. Run the Algorithm 2 with θi =
√

µ
L and θi =

µ
L ,∀i ≥ 1 for accelerated and non-accelerated proximal methods, respectively. Stop the
procedure until it obtains a solution ŷ

k̂
such that E

[
P (ŷ

k̂
)−P (x?) + µ

2‖ŷk̂ −x?‖22
]
≤ δ

where δ ≤ 2σ2/
√
µL and δ ≤ 2σ2/L for accelerated and non-accelerated proximal

methods, respectively.
3: Stage 2: Restart the Algorithm 2 by using ŷ

k̂
as the initialization and θi =

min
(√µ

L ,
2
i+2

)
and θi = min

( µ
L ,

2
i+2

)
for accelerated and non-accelerated proximal

methods, respectively, to obtain a solution yk such that E
[
P (yk) − P (x?) + µ

2‖yk −
x?‖22

]
≤ ε.

Corollary 5 Under the same setting as Theorem 7 and assume E
[
‖ηi‖22] ≤ σ2,∀i ≥ 1,

where σ2 is a constant. For accelerated proximal method, the complexity of the restart
mechanism presented in Algorithm 3 to achieve E

[
P (yk)− P (x?) + µ

2‖yk − x?‖22
]
≤ ε is

O

(√
L

µ
log

(
2∆0

ε

))
+O

(
σ2

µε

)
. (66)

For non-accelerated proximal method, the complexity of the restart mechanism presented in
Algorithm 3 to achieve E

[
P (yk)− P (x?) + µ

2‖yk − x?‖22
]
≤ ε is

O

(
L

µ
log

(
2∆0

ε

))
+O

(
σ2

µε

)
. (67)

6. Extension to Bounded Variance Models

In this section, we show that how to generalize our approach to the bounded variance
noise models from (Lan, 2012; Ghadimi and Lan, 2012). In such a model, we assume
∇̃f(xi) = G(xi, ξi) is an unbiased estimate of the gradient ∇f(xi) for all i ≥ 1 and its
variance is bounded by σ2, where {ξi}i≥1’s are i.i.d. randoms vectors. The definition
implies ηi = G(xi, ξi) −∇f(xi), E[ηi] = 0 and E[‖ηi‖2∗] ≤ σ2 for all i ≥ 1. Let Fk denote
the natural filtration up to (and including) iteration k.
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For simplicity, we assume the proximal mapping is exact that implies vk = v?k and
E[Eεk] = 0. For convex composite minimization, we have the following convergence result.

Theorem 8 Assume f is L-smooth and
a2k
Ak
≤ γ

L ,∀k ≥ 1. Let xk,yk,vk evolve according

to Algorithm 1, where vk is the exact solution to (11). In addition, ∇̃f(xi) = G(xi, ξi) is
an unbiased estimate of the gradient ∇f(xi) for all i ≥ 1 and its variance is upper bounded
by σ2, where {ξi}i≥1’s are i.i.d. randoms vectors. Then ∀k ≥ 1:

E [Gk] ≤
1

Ak

(
Dψ(x?,x0) +

k∑
i=1

a2
iσ

2

γ

)
. (68)

Proof We define v̂?k
def
= ∇ψ∗k

(
∇ψ(vk−1)−ak∇f(xk)

)
= ∇ψ∗k

(
zk+akηk

)
that is the optimal

solution to (11) when both gradient oracle and proximal mapping are exact. Note that v̂?k
is measurable w.r.t. Fk−1 as {xi}ki=1 and {ξi}k−1

i=1 are measurable w.r.t. Fk−1. It follows
that

E
[
Eηk |Fk−1

]
= E

[
ak〈ηk,x?−v̂?k

〉
|Fk−1

]
+E
[
ak〈ηk, v̂?k−v?k

〉
|Fk−1

]
+E
[
ak〈ηk,v?k−vk

〉
|Fk−1

]
.

(69)
Note E

[
ak〈ηk,x?− v̂?k

〉
|Fk−1

]
= 0 as v̂?k is independent of ηk and E[ηk] = 0. In addition, it

holds E
[
ak〈ηk,v?k−vk

〉
|Fk−1

]
= 0 as the proximal mapping is exact, i.e., v?k = vk. Plugging

them into (69), we obtain

E
[
Eηk |Fk−1

]
= E

[
ak〈ηk, v̂?k − v?k

〉
|Fk−1

]
≤
a2
k

γ
E
[
‖ηk‖2∗

]
≤
a2
kσ

2

γ
, (70)

where the first inequality is obtained by applying the same arguments as the proof of (36).

In order to bound AkGk, we next show that Γk
def
= AkGk + Dψ(x?,vk) −

∑k
i=1

a2i σ
2

γ is a
supermartingale. Specifically,

E [Γk − Γk−1|Fk−1] = E
[
AkGk +Dψ(x?,vk)−Ak−1Gk−1 −Dψ(x?,vk−1)−

a2
kσ

2

γ

∣∣∣Fk−1

]
= E

[
Ek +Dψ(x?,vk)−Dψ(x?,vk−1)−

a2
kσ

2

γ

∣∣∣Fk−1

]
≤ E

[
Eek + Eηk + Eεk −

a2
kσ

2

γ

∣∣∣Fk−1

]
≤ E

[
Eηk −

a2
kσ

2

γ

∣∣∣Fk−1

]
,

where the second equality is obtained by applying the definition of Ek from (14) and the
first inequality is obtained by plugging (17). The second inequality follows from Eek ≤ 0 due
to Proposition 2 and Eεk = 0 as the proximal mapping is exact. Combining it with (70), we
obtain

E [Γk − Γk−1|Fk−1] ≤ 0.

This shows Γk is a supermartingale. Hence, we can conclude that E[Γk] ≤ E[Γ1].

E

[
AkGk +Dψ(x?,vk)−

k∑
i=1

a2
iσ

2

γ

]
≤ E

[
A1G1 +Dψ(x?,v1)− a2

1σ
2

γ

]
.
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It can be rewritten as

E [AkGk +Dψ(x?,vk)] ≤ E
[
A1G1 −

(
Dψ(x?,v1)− a2

1σ
2

γ

)]
+

k∑
i=1

a2
iσ

2

γ
. (71)

Next, we show the upper bound of E[A1G1]. In view of (14) and A0 = 0, we obtain

E1
def
= A1G1 −A0G0 = A1G1. Combining this with (17),

E[A1G1] = E[E1] ≤ E [Eη1 ] + E [Dψ(x?,v0)−Dψ(x?,v1)] ,

where the inequality follows from Ee1 ≤ 0 and Eε1 = 0 due to Proposition 2 and the proximal

mapping is exact, respectively. It is easy to show E [Eη1 ] ≤ a21σ
2

γ by applying the same
argument as (70). Thus,

E[A1G1] ≤ E
[
Dψ(x?,v0) +

(
a2

1σ
2

γ
−Dψ(x?,v1)

)]
.

Substituting it into (71), we come up with

E [Gk] ≤
1

Ak

(
Dψ(x?,x0) +

k∑
i=1

a2
iσ

2

γ

)
.

This completes the proof for (68).

By choosing different values for ai, Theorem 8 naturally recover both accelerated and
non-accelerated convergence rates of first-order proximal methods.

Corollary 6 Consider the same setting as Theorem 8. For APM with ai = γ(i+1)
2L , ∀i ≥ 1,

we have

E[Gk] ≤
4LDψ(x?,x0)

γk(k + 3)
+

(2k + 3)σ2

3L
. (72)

For PM with ai = γ
L , ∀i ≥ 1, we have

E[Gk] ≤
LDψ(x?,x0)

γk
+
σ2

L
. (73)

Similarly, we can also have the following convergence result strongly convex composite
minimization.

Theorem 9 Let xk,yk,vk evolve according to Algorithm 2, where vk is the exact solution
to (51). In addition, ∇̃f(xi) = G(xi, ξi) is an unbiased estimate of the gradient ∇f(xi) for
all i ≥ 1 and its variance is bounded by σ2, where {ξi}i≥1’s are i.i.d. randoms vectors. If
f(x) is µ-strongly convex, then ∀ ≥ 1:

E [Gk] ≤
1

Ak

(
P (x0)− P (x?) +

µ

2
‖x0 − x?‖22 +

σ2

µ

k∑
i=1

a2
i

Ai

)
. (74)
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Proof Following the proof of Theorem 8 until (70), it becomes

E
[
Eηk |Fk−1

]
= E

[
ak〈ηk, v̂?k − v?k

〉
|Fk−1

]
≤ akE [‖ηk‖2‖v̂?k − v?k‖2|Fk−1]

≤ akE
[
‖ηi‖2 1

µAk
‖zk + akηk − zk‖2

]
≤

a2
k

µAk
E
[
‖ηk‖22

]
,

where the second inequality follows from ψk(v) is (µAk)-strongly convex. Thus, we obtain

E
[
Eηk |Fk−1

]
≤
a2
kσ

2

µAk
. (75)

In order to bound AkGk, we next show that Γk
def
= AkGk + µAk

2 ‖x
? − vk‖22 −

∑k
i=1

a2i σ
2

µAi
is a

supermartingale. Specifically,

E [Γk − Γk−1|Fk−1]

= E
[
AkGk +

µAk
2
‖x? − vk‖22 −Ak−1Gk−1 −

µAk−1

2
‖x? − vk−1‖22 −

a2
kσ

2

µAk

∣∣∣Fk−1

]
= E

[
Ek +

µAk
2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22 −

a2
kσ

2

µAk

∣∣∣Fk−1

]
≤ E

[
Eηk + Eεk −

a2
kσ

2

µAk

∣∣∣Fk−1

]
≤ E

[
Eηk −

a2
kσ

2

µAk

∣∣∣Fk−1

]
,

where the second equality is obtained by applying the definition of Ek from (14) and the
first inequality is obtained by plugging (56). The second inequality follows from Eεk = 0 as
the proximal mapping is exact. Combining it with (75), we obtain

E [Γk − Γk−1|Fk−1] ≤ 0. (76)

This shows Γk is a supermartingale. Hence, we can conclude that E[Γk] ≤ E[Γ1].

E

[
AkGk +

µAk
2
‖x? − vk‖22 −

k∑
i=1

a2
iσ

2

µAi

]
≤ E

[
A1G1 +

µA1

2
‖x? − v1‖22 −

a2
1σ

2

µA1

]
.

It can be rewritten as

E
[
AkGk +

µAk
2
‖x? − vk‖22

]
≤ E

[
A1G1 −

(
a2

1σ
2

µA1
− µA1

2
‖x? − v1‖22

)]
+

k∑
i=1

a2
iσ

2

µAi
. (77)

Next, we show the upper bound of E[A1G1]. Combining (14) with (17),

E[A1G1 −A0G0] = E[E1] ≤ E [Eη1 ] + E
[
µA0

2
‖x? − x0‖22 −

µA1

2
‖x? − v1‖22

]
,

where the inequality follows from Eε1 = 0 as the proximal mapping is exact. It is easy to

show E [Eη1 ] ≤ a21σ
2

µA1
by applying the same argument as (75). Thus,

E[A1G1] ≤ E
[
a2

1σ
2

µA1
− µA1

2
‖x? − v1‖22

]
+A0G0 +

µA0

2
‖x? − x0‖22.
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Substituting it into (77), we come up with

E [Gk] ≤
1

Ak

(
A0G0 +

µA0

2
‖x? − x0‖22 +

k∑
i=1

a2
iσ

2

µAi

)
.

Substituting A0 = 1, it can be rewritten as

E [Gk] ≤
1

Ak

(
P (x0)− P (x?) +

µ

2
‖x0 − x?‖22 +

σ2

µ

k∑
i=1

a2
i

Ai

)
.

This completes the proof.

By choosing different values for ai
Ai

, Theorem 9 can recover both accelerated and non-
accelerated convergence rates of first-order proximal methods for µ-strongly convex objec-
tives.

Corollary 7 Consider the same setting as Theorem 9. If f(x) is µ-strongly convex and
0 < θi = ai

Ai
=
√
µ/L, ∀i ≥ 1, then ∀ ≥ 1:

E [Gk] ≤
(

1−
√
µ

L

)k (
P (x0)− P (x?) +

µ

2
‖x0 − x?‖22

)
+

σ2

√
µL

. (78)

If f(x) is µ-strongly convex and 0 < θi = ai
Ai

= µ/L, ∀i ≥ 1, then ∀ ≥ 1:

E [Gk] ≤
(

1− µ

L

)k (
P (x0)− P (x?) +

µ

2
‖x0 − x?‖22

)
+
σ2

L
. (79)

Same as Corollary 5, we can apply the restart mechanism to improve the worst-case com-
plexity by using decreasing step-sizes ai, i.e., the value of θi = ai/Ai, ∀i ≥ 1 is decreasing.
We skip the details as it is similar to Corollary 5.

7. Experiments

To demonstrate our theoretical results, we consider using the APM with noise-corrupted
gradient and approximate proximal mapping to solve the Octagonal Shrinkage and Clus-
tering Algorithm for Regression (OSCAR) (Bondell and Reich, 2008):

min
x∈Rn
{‖Ax− b‖22 + λ1‖x‖1 + λ2

∑
i<j

max(|xi|, |xj |)},

where A ∈ Rm×n and b ∈ Rm. We use a synthetic dataset generated by the regression
model b = Ax?+ε with m = 3000, n = 5000. The model x? is generated by Matlab code:
repmat([zeros(85, 1); 3 * ones(10, 1); -3 * ones(5, 1)]), 50, 1). Each row of
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(a) λ1 = 0.02, λ2 = 0.04 (b) λ1 = 0.2, λ2 = 0.4 (c) λ1 = 2, λ2 = 4

Figure 1: Results of PM and APM with inexact gradient oracle but exact proximal map-
ping.

A is generated as ai ∼ N (0,Σ) where Σij = 0.7|i−j|. Then bi is obtained by bi=〈ai,x?〉+εi
where εi ∼ N (0, 1). We set ψ(x) = 1

2‖x‖
2
2 in all experiments. In view of Remark 2, we set

ak = 1
L and ak = k+1

2L for Algorithm 1 to recover non-accelerated (PM) and accelerated
(APM) proximal methods, respectively. To simulate inexact gradient oracle, we generate
additive gradient noise ηk ∼ N (0, σkI), where I is the identical matrix. The proximal
mapping (8) for OSCAR is solved by the method proposed in (Zhong and Kwok, 2011)
and the precision is controlled by εk, i.e., vk is a εk-optimal solution to (8). To study the
performance of Algorithm 1 for different values of λ1 and λ2, we test three pairs: (0.02, 0.04),
(0.2, 0.4) and (2, 4). We initialize x0 as a vector of zeros. For all experiments, we report
the mean result of 20 random trials.

7.1 Results of Inexact Gradient Oracle

We first demonstrate the behavior of APM by only considering inexact gradient oracle
while the proximal mapping is exact. For L-smooth f , we consider three kinds of gradient
noise: ηk ∼ N (0, 0.1LI),N (0, 10LI) and N (0, 103LI).

Figure 1 shows the results of PM and APM for three different groups of (λ1, λ2). In each
group, the comparisons of PM and APM suggests that APM is less robust with inexact
gradient oracle. Thus, the faster convergence rate of APM comes at the expense of being
less robust to gradient noise as the noise becomes larger. Taking Figure 1 (b) for instance,
APM performs significantly better than PM for exact gradient oracle as they converge
to optimal solution as the rates of O(1/k2) and O(1/k), respectively. When gradient is
slightly corrupted (i.e., σk = 0.1L), APM shows significant performance degradation but
still converges faster than PM. However, as the gradient noise becomes larger, APM fails
to achieve the optimal convergence rate and it becomes worse than PM. In particular, for
σk = 103L, APM even fails to decrease the objective value while PM still converges.

The comparison of Figure 1 (a), 1 (b) and 1 (c) suggests that APM becomes more
robust to gradient noise as the increase of regularization parameter. Specifically, APM
starts to perform worse than PM when σk ≥ 0.1L for regularization parameter (0.02, 0.04).
In contrast, APM still converges to smaller objective value than PM for (0.2, 0.4) and

35



Zhou and Pan

0 1000 2000 3000 4000 5000
10-5

100

0 1000 2000 3000 4000 5000
10-10

10-5

100

(a) (b)

Figure 2: Performance of PM and APM with inexact gradient oracle but exact proximal
mapping for OSCAR with λ1 = 2 and λ2 = 4. The gradient oracle becomes more
and more accurate as iteration count by setting σk = 103L/kp.
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Figure 3: Results of PM and APM with approximate proximal mapping but exact gradient
oracle for OSCAR.

(2, 4). More importantly, the performance gap between APM and PM is more significant
for (2, 4) than that of (0.2, 0.4). This can be interpreted by Proposition 3. By rewriting
(1) as an equivalent constrained problem, larger λ1 and λ2 leads to smaller feasible set that
can decrease the effect of gradient noise as stated in Theorem 3.

Figure 2 shows the performance of PM and APM if the magnitude of noise vanishes
with the number of iterations. Specifically, the noise variance σk is set as 103L/kp with
p = 1, 2, 3, 4. For PM, it achieves O(1/k) when p > 1. In contrast, it requires p > 3
for APM to achieve O(1/k2) convergence rate. This is consistent with Corollary 2 that
suggests Algorithm 1 can preserve the optimal convergence rate of APM if p > 3 and
proximal mapping is exact.

7.2 Results of Approximate Proximal Mapping

Next, we show the result of APM by using approximate proximal mapping but exact
gradient oracle. Specifically, the approximate proximal mapping finds a vk such that it is a
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Figure 4: Performance of PM and APM with approximate proximal mapping but exact
gradient oracle for OSCAR with λ1 = 2 and λ2 = 4. The proximal mapping
becomes more and more accurate as iteration count by setting εk = 10−1L/kq.
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Figure 5: Performance of PM and APM with inexact gradient oracle and approximate
proximal mapping simultaneously for OSCAR with λ1 = 2 and λ2 = 4. The gra-
dient oralce and proximal mapping become more and more accurate as iteration
count by setting σk = 103L/kp and εk = 10−1L/kq.

εk-optimal solution of (8) as Definition 5. For L-smooth f , we test three different precision
for approximate proximal mapping: εk = 10−5L, 10−3L and 10−1L.

Figure 3 demonstrates the performance of PM and APM for three different groups of
(λ1, λ2). For fixed (λ1, λ2), the comparison of PM and APM implies that the performance
of APM is also more sensitive with approximate proximal mapping than PM. Similar to
the case of inexact gradient oracle, the faster convergence of APM over PM comes at the
expense of being more sensitive with approximate proximal mapping. Thus, the APM fails
to achieve the optimal convergence rate O(1/k2) as the approximate proximal mapping
becomes less accurate. As shown in Figure 3, APM performs worse than PM and even fails
to converge in the case of εk = 10−3L and εk = 10−1L . In contrast, PM only shows slight
performance degradation in most cases.

Comparing Figure 3 (a) with 3 (b) and 3 (c), we observe that the APM becomes less
sensitive to the precision of approximate proximal mapping as the decrease of regularization
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parameter. Taking εk = 10−5L for example, APM performs better than PM for all three
groups of (λ1, λ2). However, the performance gap is obviously larger for smaller (λ1, λ2). It
is mainly because solving (11) is easier for smaller regularization parameter. In particular,
it has an analytical solution if the regularization parameter is zero.

Figure 4 shows the performance of PM and APM if the magnitude of error incurred
by approximate proximal mapping vanishes with the number of iterations. Specifically, the
error εk is set as 0.1L/kq with q = 1, 2, 3. For PM, it achieves O(1/k) if q > 2 and gradient
oracle is exact. In contrast, APM requires q > 3 for the same case. This is consistent
with Corollary 2 that the optimal convergence rate of APM can be preserved if q > 3 and
gradient oracle is exact. As discussed in Remark 5, it is better than existing results for
approximate proximal mapping defined by Definition 5.

7.3 Results of Inexact Gradient Oracle and Approximate Proximal Mapping

Next, we demonstrate the performance of APM by simultaneously considering inexact
gradient oracle and approximate proximal mapping. Suggested by Corollary 2, the noise
variance σk is set as 103L/kp with p = 1, 2, 3 and the error εk is set as 0.1L/kq with
q = 1, 2, 3. Figure 5 (a) to (c) show the performance of APM for σk = 103L/k1, 103L/k2

and 103L/k3, respectively. It should be compared with the case of inexact gradient oracle
but exact proximal mapping in Figure 2. Specifically, in that case, the optimal convergence
rate of APM can be preserved when σk decreases at a rate faster than O(1/k3). In contrast,
if the proximal mapping is also inexact, it requires σk decreases also at a rate faster than
O(1/k3).

7.4 Results of Bounded Variance Models

In this section, we perform experiments to verify the performance of our method for bounded
variance models presented in Section 6. Specifically, we consider the inexact gradient or-
acle ∇̃f(x) is obtained by a mini-batch stochastic gradient. Following classical works in
optimization methods for machine learning, e.g., (Kulunchakov and Mairal, 2020, 2019a;
Schmidt et al., 2017), we consider the logistic regression problem. Give a training dataset
by {(ai, bi)}ni=1 where ai ∈ Rp and bi ∈ {−1, 1}, the optimization formulation is

min
x∈Rp

1

n

n∑
i=1

log (1 + exp (−bi〈ai,x〉)) +
λ

2
‖x‖2. (80)

Note that the logistic loss function is convex and L-smooth where L = 0.25. The regular-
ization is λ-strongly convex due to the squared `2-norm.

We run the Algorithm 3 on the alpha dataset that is from the Pascal Large Scale
Learning Challenge website and it includes n = 500, 000 samples in dimension p = 500. We
compute ∇̃f(x) by a mini-batch stochastic gradient with batch-size m = 100. Specifically,
we consider three regularization parameters: λ = 1/10n, λ = 1/100n and λ = 1/1000n
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Figure 6: Result of PM and APM with mini-batch stochastic gradient oracle on the alpha

dataset for λ = 1/10n, λ = 1/100n and λ = 1/1000n.

where n is number of training samples. We run each experiment five times with a different
random initialization and report the average result of the five experiments in each figure.
Figure 6 shows the results of APM and PM with mini-batch stochastic gradient oracle.

Comparing the results of APM and PM for each λ, we conclude that acceleration with
decreased step size is effective even the gradient oracle is inexact. In addition, the results for
different values of λ imply acceleration is more effective when the problem is badly condition,
i.e., smaller λ. Specifically, the result of PM is similar to that of APM if λ = 1/10n, while
there is significantly performance gap between them when λ = 1/100n and λ = 1/1000n.

8. Conclusion

In this work, we have presented a study on APM with inexact gradient oracle and approx-
imate proximal mapping. Our method is generic that naturally recover the convergence
rates of both accelerated and non-accelerated first-order proximal methods. Our analysis
achieves same convergence bound as previous works in terms of inexact gradient oracle,
but a tighter convergence bound in terms of approximate proximal mapping that is more
significant when the problem is badly conditioned. Numerical results on several datasets
clearly corroborate our analysis.
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Appendix A. Omitted Proofs for Section 4

Following is a useful lemma on non-negative random sequences that will be used in proof
of Theorem 4, that is inspired by (Schmidt et al., 2011; Lin et al., 2015).

Lemma 6 We consider three non-negative sequences {Sk}k≥0, {ϑk}k≥0 and {uk}k≥0 where
{Sk}k≥0 is increased and {uk}k≥0 is random. If S0 ≥ E[u2

0] and ∀k ≥ 0:

E[u2
k] ≤ Sk +

k∑
i=1

ϑiE[ui]. (81)

Then, ∀k ≥ 0:

Sk +
k∑
i=1

ϑiE[ui] ≤
3

2

Sk +

(
k∑
i=1

ϑi

)2
 . (82)

Proof It can be proved by using (Schmidt et al., 2011, Lemma 1) and the fact of E[u2
k] ≥

(E[uk])
2. We first prove following inequality.

E[uk] ≤
1

2

k∑
i=1

ϑi +

Sk +

(
1

2

k∑
i=1

ϑi

)2
1/2

. (83)

First, it is straightforward to show (83) holds for k = 0. Then, we assume (83) hold for k−1
and prove it also true for k by induction. By the fact that E[u2

k] ≥ (E[uk])
2, the inequality

(81) implies

(E[uk])
2 ≤ Sk +

k∑
i=1

ϑiE[ui].

Applying (Schmidt et al., 2011, Lemma 1), we can obtain

E[uk] ≤
1

2

k∑
i=1

ϑi +

Sk +

(
1

2

k∑
i=1

ϑi

)2
1/2

.

This completes the proof of (83). Relaxing the right-hand side of the above inequality, we
obtain

E[uk] ≤
√
Sk +

k∑
i=1

ϑi.

For any i ≤ k, we have

E[ui] ≤
√
Si +

i∑
j=1

ϑj ≤
√
Sk +

k∑
i=1

ϑi.
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Substituting the upper bound of E[ui] into (81), we obtain

Sk +
k∑
i=1

ϑiE[ui] ≤ Sk +
k∑
i=1

ϑi

(√
Sk +

k∑
i=1

ϑi

)
≤ 3

2

Sk +

(
k∑
i=1

ϑi

)2
 .

This completes the proof.

A.1 Proof of Proposition 2

Proof By the fact that f and ψ are L-smooth and γ-strongly convex w.r.t. ‖·‖, respectively,
Eek can be upper bounded as

Eek = Ak
(
f(yk)−f(xk)−

〈
∇f(xk),yk−xk

〉)
−Dψ(vk,vk−1) ≤ Ak

L

2
‖yk−xk‖2−

γ

2
‖vk−vk−1‖2.

Substituting yk − xk = ak
Ak

(vk − vk−1), it becomes

Eek ≤ Ak
L

2

a2
k

A2
k

‖vk − vk−1‖2 −
γ

2
‖vk − vk−1‖2 ⇒ Eek =

L

2

( a2
k

Ak
− γ

L

)
‖vk − vk−1‖2 ≤ 0.

This completes the proof.

A.2 Proof of Corollary 1

Proof It is straightforward to prove it by applying Theorem 4. Substituting E
[
‖ηi‖2∗] ≤

σ2, εi ≤ ε,∀i ≥ 1 into (32), we obtain

E[Gk] ≤
1

Ak

3

2
Dψ(x?,v0) +

3σ2

γ

k∑
i=1

a2
i +

(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
ai

)2

ε

 ,∀k ≥ 1. (84)

For APM, we have ai = γ(i+1)
2L , ∀i ≥ 1 and Ak = γk(k+3)

4L . Substituting these into (84), we
come up with

E[Gk] ≤
6LDψ(x?,x0)

γk(k + 3)
+

(2k + 3)σ2

L
+

(
6 +

32

3

√
ξ

γ

)
(k + 2)ε, ∀k ≥ 1,

where we use the inequality
∑k

i=1

√
i ≤ 2

3(k + 1)3/2. This completes the proof of (42).

For PM, we have ai = γ
L ,∀i ≥ 1 and Ak = γk

L . Substituting these into (84), we come up
with

E[Gk] ≤
3LDψ(x?,x0)

2γk
+

3σ2

L
+

(
9

4
+ 4

√
ξ

γ

)
kε,∀k ≥ 1.

This completes the proof of (43).
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A.3 Proof of Corollary 2

Proof It can be proved by applying Theorem 4.
Proof of (44): Note that we have ai = γ(i+1)

2L and Ak = γk(k+3)
4L .

If E
[
‖ηi‖2∗

]
≤ σ(i+ 1)−p with p > 3,

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
≤ 3γσ2

4L2

k∑
i=1

(i+ 1)(2−p).

Relaxing the summation to integral leads to

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
≤ 3γσ2

4L2

∫ ∞
1

x(2−p) dx =
3γσ2

4(3− p)L2
x(3−p)

∣∣∣∞
1

=
3γσ2

4(p− 3)L2
. (85)

If εi ≤ ε(i+ 1)−q with q > 3,(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2

≤ 9γ + 16
√
γξ

8L

(
k+1∑
i=2

i
1−q
2

)2

ε

Relaxing the summation to integral leads to(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2

≤ 9γ + 16
√
γξ

8L
ε

(∫ ∞
1

x
1−q
2 dx

)2

=
9γ + 16

√
γξ

2L(q − 3)2
ε. (86)

Substituting (85) and (86) into (32), we obtain

E
[
Gk
]
≤ 1

k(k + 3)

(
6LDψ(x?,x0)

γ
+

3σ2

L(p− 3)
+

18γ + 32
√
γξ

γ(q − 3)2

)
.

This completes the proof for (44).
Proof of (45): Note that we have ai = γ

L and Ak = γk
L .

If E
[
‖ηi‖2∗

]
≤ σ2(i+ 1)−p with p > 1,

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
≤ 3γσ2

L2

k+1∑
i=2

i−p.

Relaxing the summation to integral leads to

k∑
i=1

3a2
i

γ
E
[
‖ηi‖2∗

]
≤ 3γσ2

L2

∫ ∞
1

x−p dx =
3γσ2

(1− p)L2
x(1−p)

∣∣∣∞
1

=
3γσ2

L2(p− 1)
. (87)

If εi ≤ ε(i+ 1)−q with q > 2,(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2

≤ 9γ + 16
√
γξ

4L

(
k+1∑
i=2

i−
q
2

)2

ε.
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Relaxing the summation to integral leads to(
9

4
+ 4

√
ξ

γ

)(
k∑
i=1

√
aiεi

)2

≤ 9γ + 16
√
γξ

4L

(∫ ∞
1

x−
q
2 dx

)2

ε =
9γ + 16

√
γξ

L(q − 2)2
. (88)

Substituting (87) and (88) into (32), we obtain

E
[
Gk
]
≤ 1

k

(
3LDψ(x?,x0)

2γ
+

3σ2

L(p− 1)
+

9γ + 16
√
γξ

γ(q − 2)2
ε

)
.

This completes the proof for (45).

A.4 Proof for Cororllary 3

Proof Substituting the value of ai = ζ(i+1)
2 ,E

[
‖ηi‖22] ≤ σ2 and εi = 0 into (32), we obtain

E[GK ] ≤
3Dψ(x?,x0)

ζK(K + 3)
+
ζσ2(K + 1)(K + 2)(2K + 3)

2γK(K + 3)
.

Relaxing the right-hand side, we obtain

E[GK ] ≤
3Dψ(x?,x0)

ζ(K + 1)2
+

2ζσ2

γ
(K + 1).

Optimizing the right-hand size upper bound with respect to ζ, we obtain

E[GK ] ≤
3LDψ(x?,x0)

γ(K + 1)2
+ σ

√
6Dψ(x?,x0)

γ(K + 1)
.

This completes the proof of (49).
Substituting the value of ai = ζ,E

[
‖ηi‖22] ≤ σ2 and εi = 0 into (32), we obtain

E[GK ] ≤
3Dψ(x?,x0)

2Kζ
+

3σ2ζ

γ
.

Plugging ζ = min

(
γ
L ,

1
σ

√
γDψ(x?,x0)

2K

)
, we come up with

E[GK ] ≤
3LDψ(x?,x0)

2γK
+ 3σ

√
Dψ(x?,x0)

2γK
.

This completes the proof of (50).
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Appendix B. Omitted Proofs for Section 5

Before presenting proofs for main results, we first introduce two useful lemmas that allows
us to bound the ε-subgradient of h(v) at vi.

Lemma 7 If vi is an εi-optimal solution to (51) in expectation, then there exists wi with
E[‖wi‖22] ≤ 2µAiεi/ai such that

µ
(
aixi +Ai−1vi−1 −Aivi

)
ai

− ∇̃f(xi)−wi ∈ ∂εih(vi).

Proof For convenience, we define

Φi(v)
def
=
〈
∇̃f(xi),v

〉
+ µ

2‖v − xi‖22 + µAi−1

ai
Dψ(v,vi−1).

Then, Ψi(v) can be rewritten as Ψi(v) = Φi(v)+h(v). By Definition 6, the εi-subdifferential
in expectation of Φi(v) at vi is

∂εiΦi(vi) =
{
w
∣∣ εi ≥ E [Φi(vi) + 〈w,v − vi〉 − Φi(v)] , ∀v

}
.

It can be equivalent to

∂εiΦi(vi) =
{

w
∣∣ εi ≥ E

[
max
v
{Φi(vi) + 〈w,v − vi〉 − Φi(v)}

]}
.

Noting Dψ(x,y) = 1
2‖x− y‖22 and substituting Φi(v), it becomes

∂εiΦi(vi) =

w
∣∣∣ E
∥∥∥∥∥w − ∇̃f(xi)−

µ
(
Aivi − aixi −Ai−1vi−1

)
ai

∥∥∥∥∥
2

2

 ≤ 2µAiεi
ai

 .

Thus, for any z ∈ ∂εiΦi(vi), it must can be expressed as the form

z = ∇̃f(xi) +
µ
(
Aivi − aixi −Ai−1vi−1

)
ai

+ wi with E
[
‖wi‖22

]
≤ 2µAiεi

ai
. (89)

By Definition 5, vi is an εi-optimal solution of Ψi(v) in expectation if and only if

E
[
Ψi(vi)− inf

v
Ψi(v)

]
≤ εi.

Invoking Definition 6, this is equivalent to 0 belongings to the εi-subgradient in expectation
of Ψi(vi). Combining this with (Bertsekas et al., 2003, Proposition 4.3.1), we come up with

0 ∈ ∂εiΨi(vi) ⊂ ∂εiΦi(vi) + ∂εih(vi).
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Therefore, there must exists some z such that z ∈ ∂εiΦi(vi) and −z ∈ ∂εih(vi). Invoking
(89), there must exist wi with E[‖wi‖22] ≤ 2µAiεi/ai such that

µ
(
aixi +Ai−1vi−1 −Aivi

)
ai

− ∇̃f(xi)−wi ∈ ∂εih(vi).

This completes the proof.

Lemma 8 If vi is an εi-optimal solution to (51) in expectation, then there exists wi with
E[‖wi‖22] ≤ 2µAiεi/ai such that, ∀v ∈ X ,

E
[
Ψi(vi) +

µAi
2ai
‖v − vi‖22 −

〈
wi,v − vi

〉
−Ψi(v)

]
≤ εi.

Proof By the convexity of Φi(v), Definition 6 implies

E
[
h(vi)−

〈
w,v − vi

〉]
− εi ≤ h(v),∀w ∈ ∂εih(vi),v ∈ X .

Applying Lemma 7, there exits wi with E[‖wi‖22] ≤ 2µAiεi/ai such that

h(v) ≥ E

[
h(vi) +

〈
µ
(
aixi +Ai−1vi−1 −Aivi

)
ai

− ∇̃f(xi)−wi,v − vi

〉]
− εi.

It can be rewritten as

h(v) ≥ E
[
h(vi) + µ

〈
xi − vi,v − vi

〉
+
µAi−1

ai

〈
vi−1 − vi,v − vi

〉
−
〈
wi + ∇̃f(xi),v − vi

〉]
−εi.

(90)
Note that

µ
〈
xi − vi,v − vi

〉
=
µ

2
‖v − vi‖22 +

µ

2
‖vi − xi‖22 −

µ

2
‖v − xi‖22,

µAi−1

ai

〈
vi−1 − vi,v − vi

〉
=
µAi−1

2ai
‖v − vi‖22 +

µAi−1

2ai
‖vi − vi−1‖22 −

µAi−1

2ai
‖v − vi−1‖22.

Substituting them into (90), we obtain

h(v) ≥ E
[
h(vi) +

µ

2
‖v − vi‖22 +

µ

2
‖vi − xi‖22 −

µ

2
‖v − xi‖22 +

µAi−1

2ai
‖v − vi‖22

+
µAi−1

2ai
‖vi − vi−1‖22 −

µAi−1

2ai
‖v − vi−1‖22 −

〈
wi + ∇̃f(xi),v − vi

〉]
− εi.

By rearranging both sides, we obtain

E
[
Ψi(vi) +

µAi
2ai
‖v − vi‖22 −

〈
wi,v − vi

〉
−Ψi(v)

]
≤ εi.

This completes the proof.
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B.1 Proof for Lemma 5

Proof From the definition of Ek,

Ek = AkP (yk)−Ak−1P (yk−1)− akP (x?).

Substituting P (yk), it becomes

Ek = Akf(yk)−Ak−1f(yk−1) +Akh
(Ak−1

Ak
yk−1 +

ak
Ak

vk

)
−Ak−1h(yk−1)− akP (x?).

By convexity of h(x), Ek is upper bounded as

Ek ≤ Akf(yk)−Ak−1f(yk−1) + akh(vk)− akP (x?).

Taking expectations for both sides, we obtain

E[Ek] ≤ E [Akf(yk)−Ak−1f(yk−1) + akh(vk)− akP (x?)] . (91)

By strong convexity of P (x), akP (x?) can be lower bounded by using vk.

akP (x?) ≥ E
[
ak

(
f(xk) +

〈
∇f(xk),x

? − xk
〉

+
µ

2
‖x? − xk‖22 + h(x?)

)]
+ E

[
µAk−1

(
Dψ(x?,vk−1)−Dψ(x?,vk−1)

)]
= E

[
ak

(〈
∇̃f(xk),x

? − xk
〉

+ h(x?) +
µ

2
‖x? − xk‖22 +

µAk−1

ak
Dψ(x?,vk−1)

)]
+ E

[
ak

(
f(xk)− 〈ηk,x? − xk〉 −

µAk−1

ak
Dψ(x?,vk−1)

)]
.

Note that Dψ(x,y) = 1
2‖x−y‖22 in this case as ψ(·) = 1

2‖x‖
2
2. The above inequality becomes

akP (x?) ≥ E
[
ak

(〈
∇̃f(xk),x

? − xk
〉

+ h(x?) +
µ

2
‖x? − xk‖22 +

µAk−1

2ak
‖x? − vk−1‖22

)]
+ E

[
ak

(
f(xk)− 〈ηk,x? − xk〉 −

µAk−1

2ak
‖x? − vk−1‖22

)]
.

Applying Lemma 8 with v = x?, there exists wk with E[‖wk‖22] ≤ 2µAkεk/ak such that

akP (x?) ≥ E
[
ak

(〈
∇̃f(xk),vk − xk

〉
+ h(vk) +

µ

2
‖vk − xk‖22 +

µAk−1

2ak
‖vk − vk−1‖22

+
µAk
2ak
‖x? − vk‖22

)]
+ E

[
ak

(
f(xk)− 〈ηk,x? − xk〉 −

µAk−1

2ak
‖x? − vk−1‖22

)
− ak

(
〈wk,x

? − vk〉+ εk
)]
.

It can be rewritten as

akP (x?) ≥ E
[
akf(xk) + akh(vk) + ak

〈
∇f(xk),vk − xk

〉
+
µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22

]
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+ E
[
µAk

2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22 − ak

(〈
wk + ηk,x

? − vk
〉

+ εk
)]
. (92)

Denote uk = ak
Ak

xk +
Ak−1

Ak
vk−1. By Jensen’s inequality,

µak
2
‖vk−xk‖22+

µAk−1

2
‖vk−vk−1‖22 =

µAk
2

( ak
Ak
‖vk−xk‖22+

Ak−1

Ak
‖vk−vk−1‖22

)
≥ µAk

2
‖vk−uk‖22.

Using ak
Ak
≤
√

µ
L , it becomes

µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22 ≥

LAk
2

µ

L
‖vk − uk‖22 ≥

LAk
2

∥∥∥ ak
Ak

(
vk − uk

)∥∥∥2

2
.

In addition,

ak
〈
∇f(xk),vk − xk

〉
= ak

〈
∇f(xk),vk − uk

〉
+ ak

〈
∇f(xk),

Ak−1

Ak
vk−1 +

ak
Ak

xk − xk

〉
= ak

〈
∇f(xk),vk − uk

〉
+Ak−1

〈
∇f(xk),

ak
Ak

(
vk−1 − xk

)〉
. (93)

Combining them with L-smoothness of f(x),

ak
〈
∇f(xk),vk − uk

〉
+
µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22

≥ ak
〈
∇f(xk),vk − uk

〉
+
LAk

2

∥∥∥ ak
Ak

(
vk − uk

)∥∥∥2

2

= Ak

{〈
∇f(xk),xk +

ak
Ak

(
vk − uk

)
− xk

〉
+
L

2

∥∥∥xk +
ak
Ak

(
vk − uk

)
− xk

∥∥∥2

2

}
.

Since f is L-smooth w.r.t. ‖ · ‖, it becomes

ak
〈
∇f(xk),vk−uk

〉
+
µak
2
‖vk−xk‖22+

µAk−1

2
‖vk−vk−1‖22 ≥ Akf

(
xk+

ak
Ak

(
vk−uk

))
−Akf(xk).

Note that yk = xk + ak
Ak

(
vk − uk

)
, we come up with

ak
〈
∇f(xk),vk − uk

〉
+
µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22 ≥ Akf(yk)−Akf(xk). (94)

By definition of uk, the second term of (93) can be written as

Ak−1

〈
∇f(xk),

ak
Ak

(
vk−1 − xk

)〉
= Ak−1

〈
∇f(xk),xk − yk−1

〉
. (95)

Combining (94) and (95), we obtain

ak
〈
∇f(xk),vk − xk

〉
+
µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22

≥ Ak
(
f(yk)− f(xk)

)
+Ak−1

〈
∇f(xk),xk − yk−1

〉
.
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Substituting the above inequality into (92),

akP (x?) ≥ E
[
akf(xk) + ak

〈
∇f(xk),vk − xk

〉
+ akh(vk) +

µak
2
‖vk − xk‖22 +

µAk−1

2
‖vk − vk−1‖22

]
+ E

[
µAk

2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22 − ak

(〈
wk + ηk,x

? − vk
〉

+ εk
)]

≥ E
[
akf(xk) +Akf(yk)−Akf(xk) +Ak−1

〈
∇f(xk),xk − yk−1

〉
+ akh(vk)

]
+ E

[
µAk

2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22 − ak

(〈
wk + ηk,x

? − vk
〉

+ εk
)]

= E
[
Akf(yk)−Ak−1

(
f(xk) +

〈
∇f(xk),yk−1 − xk

〉)
+ akh(vk)

]
+ E

[
µAk

2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22 − ak

(〈
wk + ηk,x

? − vk
〉

+ εk
)]
.

Applying the convexity of f(x), we obtain

akP (x?) ≥ E
[
Akf(yk)−Ak−1f(yk−1) + akh(vk) +

µAk
2
‖x? − vk‖22 −

µAk−1

2
‖x? − vk−1‖22

]
− E

[
ak
(〈

wk + ηk,x
? − vk

〉
+ εk

)]
. (96)

Substituting (96) into (91),

E[Ek] ≤ E
[
Eηk + Eεk +

µAk−1

2
‖x? − vk−1‖22 −

µAk
2
‖x? − vk‖22

]
.

This completes the proof.

B.2 Proof of Theorem 5

Proof Applying Lemma 5, we obtain

k∑
i=1

E[Ei] ≤
k∑
i=1

[
Eηk + Eεk

]
+
µA0

2
‖x? − v0‖2 −

µAk
2

E
[
‖x? − vk‖2

]
.

Substituting this upper bound into AkGk −A0G0 =
∑k

i=1Ei, we obtain

AkE
[
Gk +

µ

2
‖x? − vk‖2

]
≤ A0E

[
G0 +

µ

2
‖x? − v0‖2

]
+

k∑
i=1

aiE
[〈
ηi + wi,x

? − vi
〉

+ εi
]
.

Using the definition of ∆k, it becomes

E [∆k] ≤
A0

Ak
∆0 +

k∑
i=1

ai
Ak

E
[〈
ηi + wi,x

? − vi
〉

+ εi
]
. (97)

48



On Acceleration for Convex Composite Minimization

Substituting θi,
A0
Ak

can be written as

A0

Ak
=
Ak−1

Ak
×· · ·×A1

A2
×A0

A1
=
Ak − ak
Ak

×· · ·×A2 − a2

A2
×A1 − a1

A1
=

k∏
i=1

(1−θi) = Θk. (98)

Similarly, ai
Ak

can be written as

ai
Ak

=
Ak−1

Ak
× · · · × Ai

Ai+1
× ai
Ai

= θi

k∏
j=i+1

(1− θj) =
Θk

Θi
θi. (99)

Substituting (98) and (99) into (97), we obtain

E [∆k] ≤ Θk∆0 +
k∑
i=1

Θk

Θi
θiE

[〈
ηi + wi,x

? − vi
〉

+ εi
]
.

It can be rewritten as

E [∆k] ≤ ΘkE

[
∆0 +

k∑
i=1

θi
Θi

(〈
wi + ηi,x

? − vi
〉

+ εi
)]
.

This completes the proof.

B.3 Proof of Theorem 6

Proof We first introduce some notations. We define ψi(v)
def
= µAi

2 ‖v‖
2
2 + aih(v) and

zi
def
= µ(aixi + Ai−1vi−1) − ai∇̃f(xi). Same as Proposition 1, it holds that v?i = ∇ψ∗k

(
zi
)
.

Applying θi = β,∀i ≥ 1, (57) becomes

E[Gk] +
µ

2
E
[
‖x? − vk‖22

]
≤
(
1− β

)k(
∆0 + β

k∑
i=1

(
1− β

)−iE[〈ηi,x? − vi〉
]

+ β

k∑
i=1

(
1− β

)−i(E[〈wi,x
? − vi〉

]
+ εi

))
.

(100)

Bounding E[〈ηi,x?−vi〉]: We define v̂?i
def
= ∇ψ∗i (µ(aixi+Ai−1vi−1)−ai∇f(xi)) = ∇ψ∗i (zi+

aiηi) that is optimal solution to (54) when both gradient oracle and proximal mapping are
exact. Then, E

[
〈ηi,x? − vi

〉]
can be written as

E
[
〈ηi,x? − vi

〉]
= E

[
〈ηi,x? − v̂?i

〉]
+ E

[
〈ηi, v̂?i − v?i

〉]
+ E

[
〈ηi,v?i − vi

〉]
. (101)

Since v̂?i is independent of ηi and E[ηi] = 0, we obtain

E
[
〈ηi,x? − v̂?i

〉]
= 0. (102)
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It is easy to see that ψi(v) is (µAi)-strongly convex. Applying Lemma 1, we obtain

E
[
〈ηi, v̂?i − v?i

〉]
≤ E

[
‖ηi‖2‖v̂?i − v?i ‖2

]
≤ E

[
‖ηi‖2 1

µAi
‖zi + aiηi − zi‖2

]
≤ ai

µAi
E
[
‖ηi‖22

]
.

(103)
Substituting ai/Ai = β into (103), we come up with

E
[
〈ηi, v̂?i − v?i

〉]
≤ β

µ
E
[
‖ηi‖22

]
. (104)

Regarding E
[
〈ηi,v?i −vi

〉]
, we have E

[
〈ηi,v?i −vi

〉]
= 0 if the proximal mapping is exactly

solved as v?i = vi. Otherwise, the strong convexity of Ψi(·) and definition of vi lead to

εi ≥ E
[
Ψi(vi)−Ψi(v

?
i )
]
≥ µAi

2ai
E
[
‖vi − v?i ‖22

]
⇒ E

[
‖vi − v?i ‖2

]
≤
√

2aiεi
µAi

.

Thus, E[〈ηi,v?i − vi〉] can be bounded as

E
[
〈ηi,v?i − vi

〉]
≤ E

[
‖ηi‖2‖v?i − vi‖2

]
≤
√

2aiεi
µAi

E
[
‖ηi‖2

]
≤

√
2βεi
µ

E
[
‖ηi‖2

]
. (105)

Substituting (102), (104) and (105) into (101), we obtain

E
[
〈ηi,x? − vi

〉]
≤ β

µ
E
[
‖ηi‖22

]
+

√
2βεi
µ

E
[
‖ηi‖2

]
. (106)

Bounding E[〈wi,x
? − vi〉]: Applying E

[
‖wi‖22

]
≤ 2µAiεi/ai, we come up with

E
[
〈wi,x

? − vi〉
]
≤ E

[
‖wi‖2‖x? − vi‖2

]
≤
√

2µεi
β

E
[
‖x? − vi‖2

]
. (107)

We are now ready to prove (58). Substituting β =
√

µ
L , (106) and (107) into (100),

E[Gk] +
µ

2
E
[
‖x? − vk‖22

]
≤
(
1− β

)k(
∆0 +

k∑
i=1

(
1− β

)−i(β2

µ
E
[
‖ηi‖22

]
+

√
2β3εi
µ

E
[
‖ηi‖2

]
+ βεi

)

+
k∑
i=1

(
1− β

)−i√
2µβεiE

[
‖x? − vi‖2

])
. (108)

Note that √
2β3εi
µ

E
[
‖ηi‖2

]
=

√
2β2

µ
E
[
‖ηi‖2

]√
βεi ≤

β2

µ
E
[
‖ηi‖22

]
+

1

2
βεi,

where the last inequality follows from ab ≤ 1
2(a2 + b2) and E[X2] ≤ (E[X])2. Substituting

this result to (108), we obtain

E[Gk] +
µ

2
E
[
‖x? − vk‖22

]
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≤
(
1− β

)k(
∆0 +

k∑
i=1

(
1− β

)−i(2β2

µ
E
[
‖ηi‖22

]
+

3

2
βεi

)
+

k∑
i=1

(
1− β

)−i√
2µβεiE

[
‖x? − vi‖2

])
.

(109)

Since E[Gk] ≥ 0, it implies

µ

2
E
[
‖x? − vk‖22

]
≤
(
1− β

)k(
∆0 +

k∑
i=1

(
1− β

)−i(2β2

µ
E
[
‖ηi‖22

]
+

3

2
βεi

)
+

k∑
i=1

(
1− β

)−i√
2µβεiE

[
‖x? − vi‖2

])
.

Diving both sides by
(
1− β

)k
, it becomes

µ

2

(
1− β

)−kE[‖x? − vk‖22
]

≤ ∆0 +
k∑
i=1

(
1− β

)−i(2β2

µ
E
[
‖ηi‖22

]
+

3

2
βεi

)
+

k∑
i=1

(
1− β

)−i√
2µβεiE

[
‖x? − vi‖2

]
.

Applying Lemma 6 with Sk
def
= ∆0 +

∑k
i=1

(
1 − β

)−i (2β2

µ E
[
‖ηi‖22

]
+ 3

2βεi

)
, ϑi

def
= 2

(
1 −

β
)−i/2√

βεi and ui
def
=
√

µ
2

(
1− β

)−i/2E[‖x? − vi‖2
]
, we obtain

∆0 +
k∑
i=1

(
1− β

)−i(2β2

µ
E
[
‖ηi‖22

]
+

3

2
βεi

)
+

k∑
i=1

(
1− β

)−i√
2µβεiE

[
‖x? − vi‖2

]
≤ 3

2

∆0 +
k∑
i=1

(
1− β

)−i(2β2

µ
E
[
‖ηi‖22

]
+

3

2
βεi

)
+

(
k∑
i=1

2
(
1− β

)−i/2√
βεi

)2


≤ 3

2
∆0 +

3β2

µ

k∑
i=1

(
1− β

)−iE[‖ηi‖22]+
25β

4

(
k∑
i=1

(
1− β

)−i/2√
εi

)2

.

Substituting it into (109),

E[Gk] ≤
(
1− β

)k3

2
∆0 +

3β2

µ

k∑
i=1

(
1− β

)−iE[‖ηi‖22]+
25β

4

(
k∑
i=1

(
1− β

)−i/2√
εi

)2
 .

This completes the proof of (58).

B.4 Proof of Corollary 4

Proof It is straightforward to prove it by applying Theorem 6. Substituting E
[
‖ηi‖22] ≤

σ2, εi ≤ ε,∀i ≥ 1 into (58), we obtain

E[Gk] ≤
3

2

(
1− β

)k
∆0 +

3β2σ2

µ

k∑
i=1

(
1− β

)k−i
+

25βε

4

(
k∑
i=1

(
1− β

)(k−i)/2)2

. (110)
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Substituting β =
√

µ
L into (110), we come up with

E[Gk] ≤
3

2

(
1−

√
µ

L

)k
∆0 +

3σ2

√
µL

+ 25

√
L

µ
ε,

where the inequality follows from
√

1− x ≤ 1 − x
2 . This completes the proof of (59).

Substituting β = µ
L into (110), we come up with

E[Gk] ≤
3

2

(
1− µ

L

)k
∆0 +

3σ2

L
+

25L

µ
ε.

This completes the proof of (60).

B.5 Proof for Theorem 7

Proof Plugging εi = 0 and wi = 0 into (57), it becomes

E [∆k] ≤ ΘkE
[
∆0 +

k∑
i=1

θi
Θi

〈
ηi,x

? − vi
〉]
,∀k ≥ 1. (111)

Then, we follow the proof of Theorem 6 to bound E
[〈
ηi,x

? − vi
〉]

. In our case, we have
E
[
〈ηi,v?i − vi

〉]
= 0 as the proximal mapping is exactly solved as v?i = vi. Substituting

E
[
〈ηi,v?i − vi

〉]
= 0, (102) and (103) into (101), we obtain

E
[
〈ηi,x? − vi

〉]
≤ θi
µ
E
[
‖ηi‖22

]
. (112)

Plugging (112) into (111), we obtain

E [∆k] ≤ Θk

(
∆0 +

1

µ

k∑
i=1

θ2i
Θi

E
[
‖ηi‖22

])
,∀k ≥ 1.

This completes the proof of (63). Then, it is straightforward to prove (64) and (65) by
replacing θi =

√
µ/L and θi = µ/L, respectively.

B.6 Proof of Corollary 5

Proof We first prove the case of accelerated proximal method. Given the linear convergence
rate (64), the number of iterations of the first stage strategy is as following(

1−
√
µ

L

)k̂
∆0 ≤

σ2

√
µL
⇒ k̂ ≥

√
L

µ
log

(
2∆0

ε

)
.
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For the second stage, we apply Theorem 7 for k ≥ k̃ =
⌈
2
√

L
µ − 2

⌉
,

E [∆k] ≤ Θk

(
∆0 +

σ2

µ

k∑
i=1

θ2
i

Θi

)

= Θk

E
[
P (ŷ

k̂
)− P (x?) +

µ

2
‖ŷ

k̂
− x?‖22

]
+
σ2

µ

k̃−1∑
i=1

θ2
i

Θi

+ Θk
σ2

µ

k∑
i=k̃

θ2
i

Θi

≤ Θk

 2σ2

√
µL

+
σ2

√
µL

k̃−1∑
i=1

θi
Θi

+ Θk
σ2

µ

k∑
i=k̃

θ2
i

Θi

=
k̃(k̃ + 1)

(k + 1)(k + 2)

Θ
k̃−1

2σ2

√
µL

+
σ2

√
µL

Θ
k̃−1

k̃−1∑
i=1

θi
Θi

+
4σ2

µ(k + 1)(k + 2)

k∑
i=k̃

i+ 1

i+ 2

=
k̃(k̃ + 1)

(k + 1)(k + 2)

(
Θ
k̃−1

2σ2

√
µL

+
σ2

√
µL

(
1−Θ

k̃−1

))
+

4σ2

µ(k + 1)(k + 2)

k∑
i=k̃

i+ 1

i+ 2

≤ k̃(k̃ + 1)

(k + 1)(k + 2)

2σ2

√
µL

+
4σ2

µ(k + 1)(k + 2)

k∑
i=k̃

i+ 1

i+ 2

≤ k̃

(k + 1)(k + 2)

4σ2

µ
+

4σ2

µ(k + 2)

≤ 8σ2

µ(k + 2)
,

where the second and third equations follow from (Kulunchakov and Mairal, 2020, Lemma 26)
and (Kulunchakov and Mairal, 2020, Lemma 27), respectively. The last two inequalities
are obtained by applying the definition of k̃. Thus, the complexity for the second stage is
O(σ2/(µε)). Combining two stages together, we obtain the complexity shown in (66).
For the case of non-accelerated proximal method, it can be easily proved by following the
above proof.

B.7 Proof of Corollary 6

Proof It is straightforward to prove it by applying Theorem 6. Substituting E
[
‖ηi‖22] ≤

σ2, εi ≤ ε,∀i ≥ 1 into (58), we obtain

E[Gk] ≤
3

2
βk∆0 +

3σ2

L

k∑
i=1

βk−i +
25

4

√
µ

L
ε

(
k∑
i=1

β(k−i)/2

)2

.
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Applying β = 1−
√

µ
L , we come up with

E[Gk] ≤
3

2

(
1−

√
µ
L

)k
∆0 +

3σ2

√
µL

+ 25

√
L

µ
ε,

where the inequality follows from
√

1− x ≤ 1− x
2 . This completes the proof.

B.8 Proof of Corollary 7

Proof Substituting the results of (98) and (99) into (74), we obtain

E [Gk] ≤ Θk

(
∆0 +

√
1

µL
σ2

k∑
i=1

θi
Θi

)
.

Substituting θi =
√
µ/L and Θi = (1−

√
µ/L)i, it becomes

E [Gk] ≤
(

1−
√
µ

L

)k (
P (x0)− P (x?) +

µ

2
‖x0 − x?‖22

)
+

σ2

√
µL

.

This completes the proof of (78). It is straightforward to prove (79) by following the above
proof with θi = µ/L.
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